Venus Express Completes Integration And Test Phases

July 8, 2005

Venus Express, the first European space probe to investigate the planet Venus has completed the development, integration and test phase in Toulouse.

Venus Express is being manufactured by EADS Astrium as prime contractor for ESA (European Space Agency). The research probe is scheduled for launch on board a Soyuz-Fregat rocket from the Baikonur Cosmodrome (Kazakhstan) in late October 2005. EADS is the principal shareholder of Starsem, the launch provider, with 35%, Arianespace holding 15%.

For two Venusian years (500 Earth days), the probe will investigate the atmosphere of the hottest planet in terms of structure, composition and dynamics.

Venus Express, carrying seven scientific instruments (spectrometers, imagers and a plasma analyser) will orbit the second planet of the solar system at an altitude between 250 and 66,000 kilometres by flying above its poles.

Analysing and understanding the prevailing conditions in the atmosphere and in the near environment of Venus is of critical importance to understanding long term climatic processes governing the evolution of life on Earth.

By re-using both Mars Express spacecraft design and the available instruments from the Mars Express and Rosetta programs, Venus Express meets the triple challenge of achieving its scientific objectives, cost efficiency and its unparalleled development schedule.

Venus Express development began in the autumn of 2002. In the last few months the spacecraft has successfully passed its entire environmental test campaign in Intespace Toulouse and is currently undergoing the final functional test prior to Flight Acceptance Review in early July. Departure to Baikonour is planned by August this year.

Specific solar panels for the mission

As the Venus mission requires guiding the spacecraft towards the sun the layout of the solar generators has to be very special. The design is necessary for the solar arrays to withstand the high temperature loads encountered during its mission.

After Mercury, Venus is the Sun's nearest planet and consequently solar radiation is considerably higher than on Earth. Additionally, the solar arrays will be exposed to the sunlight reflection from the Venusian atmosphere, the so-called albedo.

The solar arrays have been designed and qualified for operating temperatures between -167°C and +158°C.

It delivers a power of 821 watts in the Earth's orbit and 1,468 watts in the Venusian orbit at the end of its four-year mission. Shortly after launch, Venus Express will unfold its solar arrays which will remain deployed during the whole mission.

Copyright 2005 by Space Daily, Distributed by United Press International

Explore further: Leaky atmosphere linked to lightweight planet

Related Stories

Leaky atmosphere linked to lightweight planet

February 9, 2018

The Red Planet's low gravity and lack of magnetic field makes its outermost atmosphere an easy target to be swept away by the solar wind, but new evidence from ESA's Mars Express spacecraft shows that the Sun's radiation ...

Mars Express and Venus Express operations extended

February 27, 2007

ESA's Mars Express and Venus Express missions, to explore our nearest neighbour planets Mars and Venus respectively, will continue to operate until early-May 2009. The decision was unanimously taken by ESA's Science Programme ...

Surfing an alien atmosphere

April 21, 2010

Venus Express has completed an 'aerodrag' campaign that used its solar wings as sails to catch faint wisps of the planet's atmosphere. The test used the orbiter as an exquisitely accurate sensor to measure atmospheric density ...

Tracking a solar eruption through the solar system

August 15, 2017

Ten spacecraft, from ESA's Venus Express to NASA's Voyager-2, felt the effect of a solar eruption as it washed through the solar system while three other satellites watched, providing a unique perspective on this space weather ...

Recommended for you

Hauling antiprotons around in a van

February 22, 2018

A team of researchers working on the antiProton Unstable Matter Annihilation (PUMA) project near CERN's particle laboratory, according to a report in Nature, plans to capture a billion antiprotons, put them in a shipping ...

Urban heat island effects depend on a city's layout

February 22, 2018

The arrangement of a city's streets and buildings plays a crucial role in the local urban heat island effect, which causes cities to be hotter than their surroundings, researchers have found. The new finding could provide ...

A statistical look at the probability of future major wars

February 22, 2018

Aaron Clauset, an assistant professor and computer scientist at the University of Colorado, has taken a calculating look at the likelihood of a major war breaking out in the near future. In an article published on the open ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.