MIT engineers an anti-cancer smart bomb

July 27, 2005

Imagine a cancer drug that can burrow into a tumor, seal the exits and detonate a lethal dose of anti-cancer toxins, all while leaving healthy cells unscathed. MIT researchers have designed a nanoparticle to do just that.


The dual-chamber, double-acting, drug-packing "nanocell" proved effective and safe, with prolonged survival, against two distinct forms of cancers-melanoma and Lewis lung cancer-in mice.

The work will be reported in the July 28 issue of Nature, with an accompanying commentary.

"We brought together three elements: cancer biology, pharmacology and engineering," said Ram Sasisekharan, a professor in MIT's Biological Engineering Division and leader of the research team.

"The fundamental challenges in cancer chemotherapy are its toxicity to healthy cells and drug resistance by cancer cells," Sasisekharan said. "So cancer researchers were excited about anti-angiogenesis," the theory that cutting off the blood supply can starve tumors to death. That strategy can backfire, however, because it also starves tumor cells of oxygen, prompting them to create new blood vessels and instigate metastasis and other self-survival activities.

The next obvious solution would be combining chemotherapy and anti-angiogenesis-dropping the bombs while cutting the supply lines. But combination therapy confronted an inherent engineering problem. "You can't deliver chemotherapy to tumors if you have destroyed the vessels that take it there," Sasisekharan said. Also, the two drugs behave differently and are delivered on different schedules: anti-angiogenics over a prolonged period and chemotherapy in cycles.

"We designed the nanocell keeping these practical problems in mind," he said. Using ready-made drugs and materials, "we created a balloon within a balloon, resembling an actual cell," explains Shiladitya Sengupta, a postdoctoral associate in Sasisekharan's laboratory.

In addition to Sasisekharan and Sengupta, the co-authors are David Eavarone, Ishan Capila and Ganlin Zhao of MIT's Biological Engineering Division; Nicki Watson of the Whitehead Institute for Biomedical Research; and Tanyel Kiziltepe of MIT's Department of Chemistry.

The team loaded the outer membrane of the nanocell with an anti-angiogenic drug and the inner balloon with chemotherapy agents. A "stealth" surface chemistry allows the nanocells to evade the immune system, while their size (200 nanometers) makes them preferentially taken into the tumor. They are small enough to pass through tumor vessels, but too large for the pores of normal vessels.

Once the nanocell is inside the tumor, its outer membrane disintegrates, rapidly deploying the anti-angiogenic drug. The blood vessels feeding the tumor then collapse, trapping the loaded nanoparticle in the tumor, where it slowly releases the chemotherapy.

The team tested this model in mice. The double-loaded nanocell shrank the tumor, stopped angiogenesis and avoided systemic toxicity much better than other treatment and delivery variations.

But it is patient survival and quality of life that really inspire this research, Sasisekharan said. Eighty percent of the nanocell mice survived beyond 65 days, while mice treated with the best current therapy survived 30 days. Untreated animals died at 20.

"It's an elegant technique for attacking the two compartments of a tumor, its vascular system and the cancer cells," said Judah Folkman of Children's Hospital Boston. "This is a very neat approach to drug delivery," said MIT Institute Professor Robert Langer.

The nanocell worked better against melanoma than lung cancer, indicating the need to tweak the design for different cancers. "This model enables us to rationally and systematically evaluate drug combinations and loading mechanisms," says Sasisekharan. "It's not going to stop here. We want to build on this concept."

Source: Massachusetts Institute of Technology

Related Stories

Recommended for you

Unprecedented study of Picasso's bronzes uncovers new details

February 17, 2018

Musee national Picasso-Paris and the Northwestern University/Art Institute of Chicago Center for Scientific Studies in the Arts (NU-ACCESS) have completed the first major material survey and study of the Musee national Picasso-Paris' ...

Scientists shed light on biological roots of individuality

February 16, 2018

Put 50 newborn worms in 50 separate containers, and they'll all start looking for food at roughly the same time. Like members of other species, microscopic C. elegans roundworms tend to act like other individuals their own ...

Researchers create first superatomic 2-D semiconductor

February 16, 2018

Atoms are the basic building blocks of all matter—at least, that is the conventional picture. In a new study, researchers have fabricated the first superatomic 2-D semiconductor, a material whose basic units aren't atoms ...

Humans will actually react pretty well to news of alien life

February 16, 2018

As humans reach out technologically to see if there are other life forms in the universe, one important question needs to be answered: When we make contact, how are we going to handle it? Will we feel threatened and react ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.