Buckyball aggregates are soluble, antibacterial

June 22, 2005

Research offers clues about C60 behavior in natural environments

In some of the first research to probe how buckyballs will interact with natural ecosystems, Rice University's Center for Biological and Environmental Nanotechnology finds that the molecules spontaneously clump together upon contact with water, forming nanoparticles that are both soluble and toxic to bacteria.

The research challenges conventional wisdom: since buckyballs are notoriously insoluble by themselves, most scientists had assumed they would remain insoluble in nature. The findings also raise questions about how the buckyball aggregates – dubbed nano-C60 – will interact with other particles and living things in natural ecosystems.

The findings appear in the June 1 issue of the journal Environmental Science & Technology.

"The fact that nano-C60 dissolves in water raises questions about water as a vector for the movement of these types of materials," said Vicki Colvin, CBEN director, professor of chemistry and a co-author on the study.

Buckyballs are soccer ball-shaped molecules of 60 carbon atoms that were discovered at Rice in 1985. While a few companies are already using trace amounts of buckyballs in products, large-scale production of buckyballs is still a year or two away. Ultimately, companies hope to use buckyballs in everything from pharmaceuticals to sporting goods.

The research team was led by Georgia Tech environmental engineer Joseph Hughes and included almost a dozen Rice collaborators. They found that nano-C60 readily dissolves in water. The clumps, which measured between 25 and 500 nanometers in diameter, were also found to persist for up to 15 weeks in freshwater.

The researchers also exposed nano-C60 to two common types of soil bacteria. They found the particles inhibited both the growth and respiration of the bacteria at very low concentrations -- as little as 0.5 parts per million.

"The antibacterial properties of the C60 aggregates also raise some interesting questions," said Colvin. "We think it may be possible to harness those properties for good applications, but we also advocate continued research on the potentially negative effects that these materials could have on the health of natural ecosystems."

Hughes, the study's lead author, said scientists don't yet know enough to accurately predict what impact buckyballs will have on the environment or in living systems, but he said the findings do illustrate the shortcomings of federal guidelines for the handling and disposal of buckyballs, which are subject to the same regulations as bulk carbon black.

"Not all carbon is the same," said Hughes. "Graphite and diamonds are both bulk carbon, for example, but current standards call for handling them in completely different ways. Our results suggest buckyballs also should be handled differently."

Other Rice collaborators include CBEN Executive Director Kevin Ausman; Jane Tao, assistant professor of biochemistry and cell biology; Wenhua Guo, research scientist; Lawrence Alemany, senior research scientist; and graduate students J.D. Fortner, D. Y. Lyon, C.M. Sayes, A.M. Boyd, J.C. Falkner and E.M. Hotze.

Source: Rice University

Explore further: Buckyballs enhance carbon capture: Environmentally friendly material targets flue gases, wells

Related Stories

How buckyballs hurt cells

May 27, 2008

A new study into the potential health hazards of the revolutionary nano-sized particles known as ‘buckyballs’ predicts that the molecules are easily absorbed into animal cells, providing a possible explanation for how ...

Tiny buckyballs squeeze hydrogen like giant Jupiter

March 20, 2008

Hydrogen could be a clean, abundant energy source, but it's difficult to store in bulk. In new research, materials scientists at Rice University have made the surprising discovery that tiny carbon capsules called buckyballs ...

Video shows buckyballs form by 'shrink wrapping'

October 26, 2007

The birth secret of buckyballs -- hollow spheres of carbon no wider than a strand of DNA -- has been caught on tape by researchers at Sandia National Laboratory and Rice University. An electron microscope video and computer ...

Recommended for you

Video: A colorful 'landing' on Pluto

January 20, 2017

What would it be like to actually land on Pluto? This movie was made from more than 100 images taken by NASA's New Horizons spacecraft over six weeks of approach and close flyby in the summer of 2015. The video offers a trip ...

Freeze-dried food and 1 bathroom: 6 simulate Mars in dome

January 20, 2017

Crammed into a dome with one bathroom, six scientists will spend eight months munching on mostly freeze-dried foods—with a rare treat of Spam—and have only their small sleeping quarters to retreat to for solace.

Scientists develop first catalysed reaction using iron salts

January 20, 2017

Scientists at the University of Huddersfield have developed a new chemical reaction that is catalysed using simple iron salts – an inexpensive, abundant and sustainable alternative to costlier and scarcer metals. The research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.