The impact of its environment on a quantum computer

April 14, 2005

Scientists have discovered how the performance of a quantum computer can be affected by its surrounding environment. The study, published in the latest issue of the journal Science, will help engineers to better understand how to integrate quantum components into a standard office computer - moving us one step closer to a future of quantum computing.

The collaborative team from the London Centre for Nanotechnology, University College London (UCL), the Paul Scherrer Institute/ETH in Switzerland and the Universities of Chicago and Copenhagen, have shown how its environment can radically alter the behaviour of a quantum computer, an effect which is not present for conventional computers of the type that exist now on our desktops.

Professor Gabriel Aeppli of UCL's Dept of Physics and the Director of the London Centre for Nanotechnology says: "One of the most important questions in natural sciences is whether quantum mechanics is relevant to everyday experience. The famous puzzle of whether Schroedinger's cat is dead or alive is the most graphic representation of this question, traditionally considered an academic point of no real practical import.

"However, the recent demand for secure communications and ultra-high speed computation has made the answer highly relevant to future technology where quantum 'qubits' replace the classical binary bits 0 and 1 on which current digital electronics and communications rely.

"To engineer quantum computers it is necessary for the qubits to be stable in realistic settings, such as the integrated circuit packages in a typical office computer. Physicists refer to such settings as the 'environment', or more picturesquely, the 'bath', and the challenge is to control and minimize the interactions of the qubits with the bath.

"Quantum engineering will require careful attention to the 'baths' in which the new devices will be immersed, in the same way that we worry about turbulent air conditions when we design aircraft." Baths by their very nature can be difficult to define and therefore the systematic study of interactions between qubits and baths is in its infancy. The new work shows how a well-specified bath affects the qubits in a crystal which behaves as a very primitive quantum computer. For example, the bath will change how the qubits will move in response to stimuli such as radio waves. The work also suggests that the effect can be controlled by radio waves themselves and by the temperature of the bath.

Source: University College London

Explore further: Seeing the quantum future... literally

Related Stories

Seeing the quantum future... literally

January 14, 2017

Scientists at the University of Sydney have demonstrated the ability to "see" the future of quantum systems, and used that knowledge to preempt their demise, in a major achievement that could help bring the strange and powerful ...

Researchers improve qubit lifetime for quantum computers

December 8, 2016

An international team of scientists has succeeded in making further improvements to the lifetime of superconducting quantum circuits. An important prerequisite for the realization of high-performance quantum computers is ...

Stable quantum bits can be made from complex molecules

November 10, 2016

Quantum computing is about to get more complex. Researchers have evidence that large molecules made of nickel and chromium can store and process information in the same way bytes do for digital computers. The researchers ...

Recommended for you

Experiment resolves mystery about wind flows on Jupiter

January 23, 2017

One mystery has been whether the jets exist only in the planet's upper atmosphere—much like the Earth's own jet streams—or whether they plunge into Jupiter's gaseous interior. If the latter is true, it could reveal clues ...

Camera able to capture imagery of an optical Mach cone

January 23, 2017

(Phys.org)—A team of researchers at Washington University in St. Louis has built a camera apparatus capable of capturing moving imagery of an optical Mach cone. In their paper published in the journal Science Advances, ...

New ancient otter species among largest ever found

January 23, 2017

Dr. Denise Su, curator and head of paleobotany and paleoecology at the Cleveland Museum of Natural History was co-author on new research that described a species of otter new to science and that is among the largest otter ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.