Moving electrons at the molecular and nanometer scales

March 14, 2005

Possible applications for solar cells and other small-scale circuits

Learning how to control the movement of electrons on the molecular and nanometer scales could help scientists devise small-scale circuits for a wide variety of applications, including more efficient ways of storing and using solar energy. Marshall Newton, a theoretical chemist at the U.S. Department of Energy's Brookhaven National Laboratory, will present at talk at the 229th National Meeting of the American Chemical Society highlighting the theoretical techniques used to understand the factors affecting electron movement.

"Electron donor/acceptor interactions govern a huge number of microscopic processes that everything and everybody is dependent upon," says Newton, "from the movement of electrons in electronic devices to the separation of charges necessary for life processes such as nerve cell communication and photosynthesis."

Theoretical chemists like Newton are trying to develop models to understand these interactions in molecular systems, where complex molecules with arbitrary shapes communicate electronically over long distances. Measuring the electronic conductance, or the strength of electron transfer, is one essential part of understanding how the electrons move.

Of particular interest to Newton is learning how the atomic nuclei that exist in the surrounding environment affect the electrons' flow. "The nuclei produce what we call vibronic interactions, which can inhibit or facilitate the flow of the electrons," Newton says. "So we need to understand this effect of the electrons' 'environment' if we want to control the flow."

For example, Newton says, "If you are trying to move charge or energy down a wire, you ideally want it to move down a particular linear pathway. You want to keep it directed in a narrow, confining path, without any conducting paths going off in other directions. If you understand what factors aid or hinder conductance, it should be possible to align the conducting properties in one direction and inhibit them in other directions to achieve that goal."

Through collaborations with experimental colleagues, Newton regularly has a chance to test his theoretical analyses against actual experimental results. "The more we look into these processes theoretically and experimentally, the more complicated the picture becomes. But we think we are getting a good understanding of the key variables that control events at this scale -- what promotes good electronic communication and what may inhibit it," he says.

With that understanding, it might be possible to design molecular systems to achieve particular goals, such as improving upon photosynthesis -- a research initiative actively supported by the Department of Energy's mission to secure America's future energy needs. One of the first steps in photosynthesis is getting charges separated, then using that energy to make chemical energy you can store for later use. That's the idea behind solar cells. But surpassing nature's design remains a major challenge.

According to Newton, such rational chemical design is far from impossible: "Synthetic chemistry is open ended. If you have an idea about a type of molecule you want to build, you can do it, guided by theoretical understanding to direct your design," he says.

The talk will take place Monday, March 14, at 10 a.m. in Room 8 of the San Diego Convention Center.

Source: Brookhaven National Laboratory

Explore further: Modeling the movement of electrons at the molecular scale

Related Stories

Modeling the movement of electrons at the molecular scale

September 12, 2006

Finding more efficient ways of storing and using energy requires scientists to first look at the particles that set these fundamental processes in motion – the electrons. Controlling the movement of electrons through individual ...

XMM-Newton reveals the origin of elements in galaxy clusters

May 10, 2006

Deep observations of two X-ray bright clusters of galaxies with ESA’s XMM-Newton satellite allowed a group of international astronomers to measure their chemical composition with an unprecedented accuracy. Knowing the chemical ...

Recommended for you

Researchers discover new material to help power electronics

March 18, 2019

Electronics rule our world, but electrons rule our electronics. A research team at The Ohio State University has discovered a way to simplify how electronic devices use those electrons—using a material that can serve dual ...

Semimetals are high conductors

March 18, 2019

Researchers in China and at UC Davis have measured high conductivity in very thin layers of niobium arsenide, a type of material called a Weyl semimetal. The material has about three times the conductivity of copper at room ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.