Caltech Receives $2.5 Million to Further Research in Millimeter-Wave Astronomy

February 3, 2005

The California Institute of Technology announces a $2.5 million award from the Gordon and Betty Moore Foundation to support the Combined Array for Research in Millimeter-Wave Astronomy (CARMA).
CARMA will allow significant advances in the areas of astronomy and astrophysics. The combined array will become a frontline instrument for innovative research into the formation of galaxies, stars, planets, and the origins of life.

At the increased level of instrumental sensitivity envisaged, CARMA will allow researchers to "see" almost to the edge of the universe, a few billion years after the Big Bang, and also to search comets, planet-forming disks, and the interstellar medium for chemical clues regarding the formation of complex organic molecules from which life may originate.

CARMA is a collaboration between Caltech and the University of California at Berkeley, the University of Illinois, and the University of Maryland. It will merge the six 10.4-millimeter antenna telescopes of Caltech's Owens Valley Radio Observatory (OVRO) array with the nine 6.1-millimeter antenna telescopes of the Berkeley-Illinois-Maryland Association (BIMA) array, on a high-elevation 7,200-foot site at Cedar Flat in the Inyo Mountains near Big Pine, California.

First light is anticipated this fall and full operation in 2006.

The Moore Foundation grant will be used for relocation of the 15 antennas to Cedar Flat; construction of a control center; antenna pads; associated infrastructure; design and construction of a telescope transporter; development of state-of-the-art electronics and software; and other enhancements to ensure the successful integration into a single system for optimal performance.

Relocation to the Cedar Flat high-elevation site will allow atmospheric transparency that is a factor of two greater than at the existing OVRO Observatory. With the improved atmospheric conditions, more telescopes, and updated electronics, the new facility will have 10 times the sensitivity and imaging speed of the current instruments. Shorter wavelength observations and resulting higher angular resolution will also be increased through the improved atmospheric transmission. With the new array's merged complement of OVRO and BIMA antennas, CARMA's imaging fidelity will be unsurpassed. Its unique ability to provide sensitive observations over a wide range of angular scales will enable scientific research not possible with any other existing instrument.

According to Anneila Sargent, Rosen Professor of Astronomy and director of OVRO and CARMA, "CARMA builds on the pioneering technical and scientific achievements of the OVRO and BIMA arrays over the last 20 years. Millimeter-wave emission from molecular gas and dust has opened a critical window on the formation of stars, planets, and galaxies, and results from these arrays are increasingly intriguing. CARMA, with its improved sensitivity and imaging power, will allow us to make significant advances and to remain at the forefront of astronomical research and discovery."

Sargent continues, "While CARMA will ensure our ability to undertake cutting-edge research, it will also serve a critical role as a university instrument. This new merged array will encourage the exploration of new technologies and techniques and will be a key component in training the next generation of U.S. millimeter-wave radio astronomers."

Sargent concludes, "If someone asks me these days, 'How's your karma?', I tell them, 'My CARMA is good!'"

Explore further: Open clusters like Orion have low fertility rate

Related Stories

Open clusters like Orion have low fertility rate

July 8, 2008

A detailed survey of stars in the Orion Nebula has found that fewer than 10 percent have enough surrounding dust to make Jupiter-sized planets, according to a report by astronomers at the University of California, Berkeley, ...

Recommended for you

Metacognition training boosts gen chem exam scores

October 20, 2017

It's a lesson in scholastic humility: You waltz into an exam, confident that you've got a good enough grip on the class material to swing an 80 percent or so, maybe a 90 if some of the questions go your way.

Carbon coating gives biochar its garden-greening power

October 20, 2017

For more than 100 years, biochar, a carbon-rich, charcoal-like substance made from oxygen-deprived plant or other organic matter, has both delighted and puzzled scientists. As a soil additive, biochar can store carbon and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.