NASA Set to Launch First Comet Impact Probe

December 14, 2004
Deep Impact's solar panels are opened for testing. Credit: NASA

Launch and flight teams are in final preparations for the planned January liftoff from Cape Canaveral Air Force Station, Fla., of NASA's Deep Impact spacecraft. The mission is designed for a six-month, one-way, 431 million kilometer (268 million mile) voyage. Deep Impact will deploy a probe that essentially will be "run over" by the nucleus of comet Tempel 1 at approximately 37,000 kph (23,000 mph).

"From central Florida to the surface of a comet in six months is almost instant gratification from a deep space mission viewpoint," said Rick Grammier, Deep Impact project manager at NASA's Jet Propulsion Laboratory (JPL), Pasadena, Calif. "It is going to be an exciting mission, and we can all witness its culmination together as Deep Impact provides the planet with its first man-made celestial fireworks on our nation's birthday, July 4th," he said.

The fireworks will be courtesy of a 1-by-1-meter (39-by-39 inches) copper-fortified probe. It is designed to obliterate itself, as it excavates a crater possibly large enough to swallow the Roman Coliseum. Before, during and after the demise of this 372-kilogram (820-pound) impactor, a nearby spacecraft will be watching the 6-kilometer (3.7-mile) wide comet nucleus, collecting pictures and data of the event.

"We will be capturing the whole thing on the most powerful camera to fly in deep space," said University of Maryland astronomy professor Dr. Michael A'Hearn, Deep Impact's principal investigator. "We know so little about the structure of cometary nuclei that we need exceptional equipment to ensure that we capture the event, whatever the details of the impact turn out to be," he explained.

Imagery and other data from the Deep Impact cameras will be sent back to Earth through the antennas of the Deep Space Network. But they will not be the only eyes on the prize. NASA's Chandra, Hubble and Spitzer space telescopes will be observing from near-Earth space. Hundreds of miles below, professional and amateur astronomers on Earth will also be able to observe the material flying from the comet's newly formed crater.

Deep Impact will provide a glimpse beneath the surface of a comet, where material and debris from the solar system's formation remain relatively unchanged. Mission scientists are confident the project will answer basic questions about the formation of the solar system, by offering a better look at the nature and composition of the celestial travelers we call comets.

"Understanding conditions that lead to the formation of planets is a goal of NASA's mission of exploration," said Andy Dantzler, acting director of the Solar System division at NASA Headquarters, Washington. "Deep Impact is a bold, innovative and exciting mission which will attempt something never done before to try to uncover clues about our own origins."

With a closing speed of about 37,000 kph (23,000 mph), what of the washing machine-sized impactor and its mountain-sized quarry?

"In the world of science, this is the astronomical equivalent of a 767 airliner running into a mosquito," said Don Yeomans, a Deep Impact mission scientist at JPL. "It simply will not appreciably modify the comet's orbital path. Comet Tempel 1 poses no threat to the Earth now or in the foreseeable future," he added.

Ball Aerospace & Technologies in Boulder, Colo., built NASA's Deep Impact spacecraft. It was shipped to Florida Oct. 17 to begin final preparations for launch. Liftoff is scheduled for Jan. 8 at 1:39:50 p.m. EST, with another opportunity 40 minutes later.

Principal Investigator A'Hearn leads the mission from the University of Maryland, College Park. JPL manages the Deep Impact project for the Science Mission Directorate at NASA Headquarters. Deep Impact is a mission in NASA's Discovery Program of moderately priced solar system exploration missions.

Explore further: NASA tests atomic clock for deep space navigation

Related Stories

NASA tests atomic clock for deep space navigation

February 7, 2018

In deep space, accurate timekeeping is vital to navigation, but many spacecraft lack precise timepieces on board. For 20 years, NASA's Jet Propulsion Laboratory in Pasadena, California, has been perfecting a clock. It's not ...

Living with volcanic gases

January 29, 2018

Professor Tamsin Mather, a volcanologist in Oxford's Department of Earth Sciences reflects on her many fieldwork experiences at Massaya volcano in Nicaragua, and what she has learned about how they effect the lives of the ...

What would happen if the Earth were actually flat?

January 24, 2018

Welcome to the new year, 2018. The Earth has yet again made a revolution about the sun. But not so fast. If you subscribe to the idea of a flat Earth, then you'd believe that no such thing happened, because the sun rotates ...

A self-return spacesuit attends to astronaut safety

December 6, 2017

(Tech Xplore)—Draper researchers have filed a patent that presents a spacesuit solution for guaranteeing astronauts' safety while on their missions. The last thing they would want is to get lost in space.

Marine robots detect whales in the deep ocean

December 18, 2017

Scientists at the University of East Anglia have been recording the sounds made by whales and porpoises off the coast of northern Scotland – using a fleet of pioneering marine robots.

Recommended for you

Researchers turn light upside down

February 23, 2018

Researchers from CIC nanoGUNE (San Sebastian, Spain) and collaborators have reported in Science the development of a so-called hyperbolic metasurface on which light propagates with completely reshaped wafefronts. This scientific ...

Recurrences in an isolated quantum many-body system

February 23, 2018

It is one of the most astonishing results of physics—when a complex system is left alone, it will return to its initial state with almost perfect precision. Gas particles, for example, chaotically swirling around in a container, ...

Hauling antiprotons around in a van

February 22, 2018

A team of researchers working on the antiProton Unstable Matter Annihilation (PUMA) project near CERN's particle laboratory, according to a report in Nature, plans to capture a billion antiprotons, put them in a shipping ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.