Woomera test ahead of scramjet flights

September 14, 2004

University of Queensland scientists will fly a baby rocket at Woomera, South Australia in early October this year to test new systems ahead of next year’s full-scale scramjet engine experimental flights.

The new flight, using a tiny, reusable payload weighing only 5.8kg, will be known as HyShot Zuni I (or HyShot ZI).

Members of the HyShot international program Dr Ross Paull and Mr Myles Frost will use the HyShot ZI payload, which will be attached to a 1.5m Zuni single stage rocket, to explore notions for controlling high-speed vehicles during the small-scale test.

HyShot ZI will pave the way for three scramjet experimental flights, two at Mach 8, or 8000km an hour, and one at Mach 10, or 11,000km an hour, to be held at Woomera next year.

The experimental flights are designed to further scramjet technology. Scramjets are air-breathing supersonic combustion ramjet engines. They are set to revolutionise the launch of small space payloads, such as communications satellites, by substantially lowering costs.

Dr Paull and Mr Frost said this year’s small-scale flight of HyShot ZI was part of exhaustive preparation for next year’s flights, which would also include shaker and thermal cycling tests.

The Zuni flight would simulate forces which scientists expected during higher scramjet engine speeds during next year’s full-scale experiments at Woomera.

Dr Paull, Mr Frost and mechanical engineering student Thomas Neuenhahn have designed the new hardware, software and control algorithms which will be tested in the prototype HyShot ZI payload.

Creating and manufacturing the miniature payload presented many design and engineering challenges for the researchers. The prototype is fitted with an array of computer sensors, web cameras, manoeuvreable surfaces and a new battery pack design, as well as a tiny parachute.

The 11-minute flight will see the ex-military Zuni rocket take off at a 70 degree trajectory, and burn for 1.2 seconds until it reaches a speed of Mach 3.1, or more than three times the speed of sound. (An F-111 aircraft can reach a speed of about Mach 2.2.)

At burnout, the tiny reusable HyShot ZI payload will separate at about 0.6km above the earth when the scientists will conduct several experiments using novel techniques to deliberately create instability and then regain control of the vehicle.

The mission will continue for about one minute until the HyShot ZI payload reaches a height of 6kms above the Earth when the parachute will be activated to bring the payload safely down.

The descent will take 10-minutes. The experiment has a backup data retrieval plan should in-flight systems malfunction.

Dr Paull is the computer and software engineer, and Mr Frost, a mechanical engineer and research officer for the HyShot program of UQ’s Centre for Hypersonics. They both were part of the successful UQ-led HyShot II flight which demonstrated the world’s first supersonic combustion in an atmospheric flight test at Woomera on July 30, 2002 at speeds of more than Mach 8, or 8 times the speed of sound.

Dr Paull said the presence of onboard cameras would take data acquisition much further, providing additional reference points.

“We’re still analysing HyShot II data which was excellent and unexpectedly rich,” he said.

“Even two years later, we are gaining new insights and finding intricacies and subtleties which should assist us well in the future.”

The Australian Space Research Institute (ASRI) is the launch provider for HyShot ZI.

Source: UQ

Explore further: Autopsy of a space disaster turns failure to success

Related Stories

Autopsy of a space disaster turns failure to success

December 5, 2013

On September 18 this year, far above the Arctic Circle at Norway's Andoya Rocket Range, the SCRAMSPACE hypersonic scramjet flight experiment was about to launch. Three and a half years of intense effort by a small team of ...

Recommended for you

Carefully crafted light pulses control neuron activity

November 17, 2017

Specially tailored, ultrafast pulses of light can trigger neurons to fire and could one day help patients with light-sensitive circadian or mood problems, according to a new study in mice at the University of Illinois.

Scientific advances can make it easier to recycle plastics

November 17, 2017

Most of the 150 million tons of plastics produced around the world every year end up in landfills, the oceans and elsewhere. Less than 9 percent of plastics are recycled in the United States, rising to about 30 percent in ...

Strain-free epitaxy of germanium film on mica

November 17, 2017

Germanium, an elemental semiconductor, was the material of choice in the early history of electronic devices, before it was largely replaced by silicon. But due to its high charge carrier mobility—higher than silicon by ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.