NEC Realizes Control of Position & Diameter of Carbon Nanotube

September 2, 2004

Technology that contributes to electronic devices utilizing carbon nanotubes

NEC Corporation today announced the development of a diameter/position-controlled carbon nanotube ("CNT") growth technique that is based on conventional electron beam ("EB") lithography. This technique will provide a practical method for controlling the position and diameter of each CNT. NEC expects this result will promote the research and development of high-performance CNT electronic devices.

This result was achieved through the development of the following key technology:
Tiny, iron-doped resist dots were made into a pattern using EB lithography. Thermal annealing was subsequently carried out to segregate the iron nanoparticles in the dot pattern. Due to the original content of the iron dopant and the size of the resist pattern, the diameter of the particle can be effectively controlled well below the lithography limit.

Control of the position of resist dots is enabled through EB lithography, which uses high-resolution EB resist called "calixarene". Iron nanoparticles are precisely placed on the point where the original resist dot has been formed.

Single-walled carbon nanotubes ("SWNT") with a designed diameter can be grown from the iron nanoparticles using the high-yield CNT growth technique based on chemical vapor deposition ("CVD").


Using this lithographically-directed nanoparticle synthesis method, iron particles having a 1.7±0.6 nm diameter distribution were successfully patterned at a 100-nm pitch within a positioning accuracy of ±5 nm. CNTs were grown by CVD at 750°C using ethanol. As a result a CNT diameter distribution of 1.3±0.4 nm was obtained. NEC has already confirmed that the growing direction of CNTs can be controlled by applying an electric field during CVD growth. These techniques will enable NEC to grow CNTs with individually controlled position, diameter, and orientation.

These results are expected to promote the research and development of CNT transistors as high-performance electrical devices. NEC will continue to work on advancements in CNT control technology, electric characteristic control, device structure design, and fabrication process development with the aim of realizing a CNT transistor by 2010.

This result will be announced on September 4 at the 2004 autumn meeting of the Japan Society of Applied physics being held from September 1 to 4 in Sendai, Japan, and at the 2004 international conference on Micro- and Nano-Engineering being held from September 19 to 22 in Rotterdam, Holland. Japan Fine Ceramics Center (JFCC) and the New Energy and Industrial Technology Development Organization (NEDO) commissioned this research as a part of the Nanocarbon Application Product Creation Technology Project.

Explore further: A new method developed for measuring carbon nanotubes

Related Stories

Vine-tree-like CNT architectures

November 3, 2014

The vine-tree structure is widely observed in nature when the plant has a growth habit of trailing or climbing stems. The vines use trees for growth rather than devoting energy to development of supportive tissue, enabling ...

Fast or superfast water transport?

May 28, 2013

(Phys.org) —There were high hopes of using carbon nanotubes, particularly for ultra-fast water transport to desalinate seawater. However, a simulation now reveals that these ultra-fast transport rates might have not been ...

Recommended for you

Cells lacking nuclei struggle to move in 3-D environments

January 20, 2018

University of North Carolina Lineberger Comprehensive Cancer Center researchers have revealed new details of how the physical properties of the nucleus influence how cells can move around different environments - such as ...

Information engine operates with nearly perfect efficiency

January 19, 2018

Physicists have experimentally demonstrated an information engine—a device that converts information into work—with an efficiency that exceeds the conventional second law of thermodynamics. Instead, the engine's efficiency ...

Team takes a deep look at memristors

January 19, 2018

In the race to build a computer that mimics the massive computational power of the human brain, researchers are increasingly turning to memristors, which can vary their electrical resistance based on the memory of past activity. ...

Fast computer control for molecular machines

January 19, 2018

Scientists at the Technical University of Munich (TUM) have developed a novel electric propulsion technology for nanorobots. It allows molecular machines to move a hundred thousand times faster than with the biochemical processes ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.