Scientists Discover Ganymede has a Lumpy Interior

August 18, 2004
Scientists Discover Ganymede has a Lumpy Interior

Scientists have discovered irregular lumps beneath the icy surface of Jupiter's largest moon, Ganymede. These irregular masses may be rock formations, supported by Ganymede's icy shell for billions of years. This discovery comes nearly a year after the orchestrated demise of NASA's Galileo spacecraft into Jupiter's atmosphere and more than seven years after the data were collected.

Researchers at NASA's Jet Propulsion Laboratory, Pasadena, Calif., and the University of California, Los Angeles, report their findings in a paper that will appear in the Aug. 13 issue of the journal Science.

The findings have caused scientists to rethink what the interior of Ganymede might contain. The reported bulges reside in the interior, and there are no visible surface features associated with them. This tells scientists that the ice is probably strong enough, at least near the surface, to support these possible rock masses from sinking to the bottom of the ice for billions of years. But this anomaly could also be caused by piles of rock at the bottom of the ice.

"The anomalies could be large concentrations of rock at or underneath the ice surface. They could also be in a layer of mixed ice and rock below the surface with variations in the amount of rock," said Dr. John Anderson, a scientist and the paper's lead author at JPL. "If there is a liquid water ocean inside Ganymede's outer ice layer there might be variations in its depth with piles of rock at the ocean bottom. There could be topographic variations in a hidden rocky surface underlying a deep outer icy shell. There are many possibilities, and we need to do more studies."

Dr. Gerald Schubert, co-author at UCLA, said "Although we don't yet have anything definitive about the depth at this point, we did not expect Ganymede's ice shell to be strong enough to support these lumpy mass concentrations. Thus, we expect that the irregularities would be close to the surface where the ice is coldest and strongest, or at the bottom of the thick ice shell resting on the underlying rock. It would really be a surprise if these masses were deep and in the middle of the ice shell."

Ganymede has three main layers. A sphere of metallic iron at the center (the core), a spherical shell of rock (mantle) surrounding the core, and a spherical shell of mostly ice surrounding the rock shell and the core. The ice shell on the outside is very thick, maybe 800 kilometers (497 miles) thick. The surface is the very top of the ice shell. Though it is mostly ice, the ice shell might contain some rock mixed in. Scientists believe there must be a fair amount of rock in the ice near the surface. Variations in this amount of rock may be the source of these possible rock formations.

Scientists stumbled on the results by studying Doppler measurements of Ganymede's gravity field during Galileo's second flyby of the moon in 1996. Scientists were measuring the effect of the moon's gravity on the spacecraft as it flew by. They found unexpected variations.

"Believe it or not, it took us this long to straighten out the anomaly question, mostly because we were analyzing all 31 close flybys for all four of Jupiter's large moons," said Anderson. "In the end, we concluded that there is only one flyby, the second flyby of Ganymede, where mass anomalies are evident."

Scientists have seen mass concentration anomalies on one other moon before, Earth's, during the first lunar orbiter missions in the 1960s. The lunar mass concentrations during the Apollo moon mission era were due to lava in flat basins. However, scientists cannot draw any similarities between these mass concentrations and what they see at Ganymede.

"The fact that these mass anomalies can be detected with just flybys is significant for future missions," said Dr. Torrence Johnson, former Galileo project scientist. "With this type of information you could make detailed gravity and altitude maps that allow us to actually map structures within the ice crust or on the rocky surface. Knowing more about the interior of Ganymede raises the level of importance of looking for gravity anomalies around Jupiter's moons and gives us something to look for. This might be something NASA's proposed Jupiter Icy Moons Orbiter Mission could probe into deeper."

The paper was co-authored by Dr. Robert A. Jacobson and Eunice L. Lau of JPL, with Dr. William B. Moore and Jennifer L. Palguta of UCLA. JPL is a division of the California Institute of Technology in Pasadena. JPL designed and built the Galileo orbiter, and operated the mission.

For more information about the Galileo mission, visit galileo.jpl.nasa.gov/ .

Explore further: Scientists discover evidence for a habitable region within Saturn's moon Enceladus

Related Stories

All that life needs on Enceladus

April 17, 2017

If chemical energy is life's coin and water is life's marketplace, there may be a swift economy alive and well beneath the icy shell of Saturn's brightest moon. Such was the announcement during NASA's April 13th press conference: ...

Earth probably began with a solid shell

February 27, 2017

Today's Earth is a dynamic planet with an outer layer composed of giant plates that grind together, sliding past or dipping beneath one another, giving rise to earthquakes and volcanoes. Others separate at undersea mountain ...

From rocks in Colorado, evidence of a 'chaotic solar system'

February 22, 2017

Plumbing a 90 million-year-old layer cake of sedimentary rock in Colorado, a team of scientists from the University of Wisconsin-Madison and Northwestern University has found evidence confirming a critical theory of how the ...

Recommended for you

SpaceX to launch classified US govt payload Sunday

April 29, 2017

SpaceX on Sunday is scheduled to make its first military launch, with a classified payload for the National Reconnaissance Office, which makes and operates spy satellites for the United States.

Is dark matter 'fuzzy'?

April 28, 2017

Astronomers have used data from NASA's Chandra X-ray Observatory to study the properties of dark matter, the mysterious, invisible substance that makes up a majority of matter in the universe. The study, which involves 13 ...

Mineral resource exhaustion is just a myth: study

April 28, 2017

Recent articles have declared that deposits of raw mineral materials (copper, zinc, etc.) will be exhausted within a few decades. An international team including the University of Geneva (UNIGE), Switzerland, has shown that ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.