Princeton wins NASA Competition to Develop Plasma Rocket

August 30, 2004

NASA has selected engineers at Princeton University to develop an advanced rocket thruster that could send people or robots to other planets with far less propellant than conventional engines.

The National Aeronautics and Space Administration awarded a three-year, $4.4 million contract to a team led by Edgar Choueiri, associate professor of mechanical and aerospace engineering, to develop an advanced type of rocket called a plasma thruster. The contract is part of a broad effort by NASA to develop "a new class of ambitious robotic and human exploration missions not possible with existing propulsion technologies," according to Ray Taylor, acting deputy director of NASA's Project Prometheus.

Plasma thrusters are unlike conventional rockets because they do not burn fuel. Instead, they produce superheated, electrically charged particles, called plasma, and use electromagnetic forces to propel the plasma particles from the thruster at a very high speed. Plasma thrusters need relatively little propellant because the particles can be made to move much faster than the combustion exhaust from conventional rockets. In Choueiri's system, the particles will be lithium ions.

Plasma propulsion systems have been used in recent space flights, but still do not operate at the very high power levels (hundreds of kilowatts) required for interplanetary flight, said Choueiri. His project, called "Alfa2: Advanced Lithium-fed Applied-field Lorentz Force Accelerator," could result in a rocket design capable of sending heavy cargo and humans to the moon, Mars or beyond.

Choueiri will lead a group that also includes scientists at three NASA facilities -- the Glenn Research Center, Jet Propulsion Laboratory and Marshall Space Flight Center -- in addition to the University of Michigan and the Worcester (Mass.) Polytechnic Institute.

Source: Princeton University

Explore further: Wendelstein 7-X: Second round of experimentation started

Related Stories

Wendelstein 7-X: Second round of experimentation started

September 11, 2017

The plasma experiments in the Wendelstein 7-X fusion device at Max Planck Institute for Plasma Physics (IPP) in Greifswald, Germany, have been resumed after a 15-month conversion break. The extension has made the device fit ...

Physicists explore a new recipe for heating plasma

August 22, 2017

In the quest for fusion energy, scientists have spent decades experimenting with ways to make plasma fuel hot and dense enough to generate significant fusion power. At MIT, researchers have focused their attention on using ...

Team produces unique simulation of magnetic reconnection

September 8, 2017

Jonathan Ng, a Princeton University graduate student at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), has for the first time applied a fluid simulation to the space plasma process behind ...

Recommended for you

Barn owls found to suffer no hearing loss as they age

September 20, 2017

(Phys.org)—A small team of researchers with the University of Oldenburg has found that barn owls do not suffer hearing loss as they get older. In their paper published in Proceedings of the Royal Society B, the group describes ...

Ageing star blows off smoky bubble

September 20, 2017

Astronomers have used ALMA to capture a strikingly beautiful view of a delicate bubble of expelled material around the exotic red star U Antliae. These observations will help astronomers to better understand how stars evolve ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.