Electric-Field-Induced Phase-Separation of Liquid Mixtures

August 9, 2004
Temperature quench of the system

Researches have shown that electric fields can control the phase separation behaviour of mixtures of simple liquids under practical conditions, provided that the fields are non-uniform. This direct control over phase separation behaviour depends on field intensity, with the electrode geometry determining the length-scale of the effect. This phenomenon will find a number of nanotechnological applications, particularly as it benefits from field gradients near small conducting objects.

Ludwik Leibler and colleagues at the City of Paris Industrial Physics and Chemistry Higher Educational Institution (ESPCI) have predicted theoretically and demonstrated experimentally that reversible phase separation can be induced in ordinary liquid mixtures under practical conditions provided non-uniform fields are used.

It is exciting and astonishing that such a simple but fundamental physics has not been explored so far. In some sense this is the simplest electro-optical effect that can exist: it does not require anything from the molecules other than having a modestly different dielectric constant. This is contrast to all other electro-optical effects (e.g. liquid crystals, birefringent molecules, etc.). The results are reported in the 29 July issue of Nature.

They predicted and demonstrated that applying a voltage of 100 V across unevenly spaced electrodes about 50 ┬Ám apart, can reversibly induce the demixing of paraffin and silicone oil at about 1 K (and more) above the phase transition temperature of the mixture. When the field gradients are turned off, the mixture becomes homogeneous again.

How the method works
When neutral object (say a colloidal particle) is placed in a field gradient it is attracted towards an electrode. This is due to a well known dielectrophoretic force. Here, this effect is used to separate molecules of liquids with different dielectric constant. When field gradients are high enough, phase separation is induced. A sharp interface, which is a signature of phase separation, is formed even though electric field varies smoothly.

Electric-field-induced phase-separation
Electric-field-induced phase-separation

Similar ideas to those of the paper can be used to compensate gravity effects and produce zero-gravity conditions in mixtures and suspentions; or liquid phase separation can be efficiently induced in a centrifuge.

The effect benefits from decrease of the size of the electrodes (larger fields and and shorter time constants). Hence, it seems ideally suited for microfluidic applications (liquid separation and distillation, light guiding and deflection, etc.) The effect can be also induced by electromagnetic radiation (laser tweezers).

Explore further: Blackbody radiation from a warm object attracts polarizable objects

Related Stories

Using polymeric membranes to clean up industrial separations

November 16, 2017

There are scores of promising technologies under development that can reduce energy consumption or capture carbon in fields including biotech, computer science, nanotechnology, materials science, and more. Not all will prove ...

Scientists demonstrate one of largest quantum simulators

November 29, 2017

Physicists at MIT and Harvard University have demonstrated a new way to manipulate quantum bits of matter. In a paper published today in the journal Nature, they report using a system of finely tuned lasers to first trap ...

Physicists predict nonmetallic half-metallicity

September 15, 2017

A team of researchers of the Russian Academy of Sciences (RAS), in collaboration with a colleague from RIKEN (Institute for Physical and Chemical Research in Japan), has provided theoretical proof of the existence of a new ...

Recommended for you

Complete design of a silicon quantum computer chip unveiled

December 15, 2017

Research teams all over the world are exploring different ways to design a working computing chip that can integrate quantum interactions. Now, UNSW engineers believe they have cracked the problem, reimagining the silicon ...

Finding a lethal parasite's vulnerabilities

December 15, 2017

An estimated 100 million people around the world are infected with Strongyloides stercoralis, a parasitic nematode, yet it's likely that many don't know it. The infection can persist for years, usually only causing mild symptoms. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.