Quantum Computer Science on the Internet

July 31, 2004

A simulated quantum computer went online on the Internet last month. With the ability to control 31 quantum bits, it is the most powerful of its type in the world. Software engineers can use it to test algorithms that might one day be applied in real computer networks.

Many computing problems in fundamental physics or mathematics require huge amounts of processing power – far more than present-day computers are capable of providing. A well-known example is the prime factoring of very large numbers: Computer scientists use this technique to measure computer performance, and apply them for advanced encryption systems. Quantum computers, based on the laws of quantum physics, would be much more efficient at solving such complex problems than today’s “ordinary” computers. Unlike classical binary digits (0 or 1), their smallest units of information can assume any value between 0 and 1. This could permit massively parallel computation and multiplies storage capacity by a factor of many billions.

But quantum computers are still at a very early stage of development. The hardware requirements are extremely demanding and the few existing quantum computing devices only have a limited processing capacity of at best 7 qubits (27 = 128 bits processing size).

Since mid-June, a research group at the Fraunhofer Institute for Computer Architecture and Software Technology FIRST has been offering Internet access to the world’s most powerful (31 qubit) quantum simulator, at www.qc.fraunhofer.de. Using a standard browser, interested parties in research and industry can see how quantum waves and atomic particles are used to process information, and thus gain a better understanding of how quantum processes work. The demonstration area of the site contains examples of several standard problems. Users can set up their own new algorithms and logical operations after registering online (free of charge). The simulator demonstrates the way in which a quantum computer would go about solving the calculation. Is the newly developed algorithm suitable for quantum computing, and does it achieve the desired result?

“The main focus of our project lies in the simulation of Hamiltonians, i.e. the experimental implementation of quantum algorithms,” emphasizes Helge Rosé. “This will give us a better understanding of the differences between real and theoretically ideal quantum computing devices.” It is also a means of gathering knowledge that will later be needed to build real quantum computers. “Members of the quantum computing community have no need to wait for the next generation of quantum computers – they can test their developments and ideas today,” the project manager concludes.

Source: Fraunhofer-Gesellschaft

Explore further: 'Kagome metal': Physicists discover new quantum electronic material

Related Stories

Theoretical quantum spin liquid prepared for the first time

March 15, 2018

In 1987, Paul W. Anderson, a Nobel Prize winner in physics, proposed that high-temperature superconductivity, or loss of electrical resistance, is related to an exotic quantum state now known as quantum spin liquid. Magnetic ...

How to build a computer with free will

March 14, 2018

Do you have free will? Can you make your own decisions? Or are you more like an automaton, just moving as required by your constituent parts? Probably, like most people, you feel you have something called free will. Your ...

Quantum speed limits are not actually quantum

March 15, 2018

Quantum mechanics has fundamental speed limits—upper bounds on the rate at which quantum systems can evolve. However, two groups working independently have published papers showing for the first time that quantum speed ...

Recommended for you

Insects could help us find new yeasts for big business

March 21, 2018

Yeasts are tiny fungi - but they play key roles in producing everything from beer and cheese to industrial chemicals and biofuels. And now scientists are proposing a new approach that could help these industries find new ...

Weird superconductor leads double life

March 21, 2018

Until about 50 years ago, all known superconductors were metals. This made sense, because metals have the largest number of loosely bound "carrier" electrons that are free to pair up and flow as electrical current with no ...

Promiscuity may have accelerated animal domestication

March 21, 2018

Domestication of wild animals may have accelerated as promiscuity increased among the high density populations drawn to life near humans, according to a new paper by University of Liverpool researchers.

Radio nebula discovered around the pulsar PSR J0855–4644

March 21, 2018

Using the Giant Metrewave Radio Telescope (GMRT) in India, an international team of astronomers has detected a diffuse radio emission forming a nebula around the pulsar PSR J0855–4644. The finding is reported March 9 ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.