James Bond-style technologies are closer to reality

July 21, 2004

James Bond-style technologies such as cell phones the size of earpieces and invisible sensors sprinkled about to detect toxins are closer to reality. University of Michigan researchers have figured out how to build wireless systems even smaller while still retaining range and power efficiency.

One obstacle to further shrink small wireless devices has been trying to fit all the components onto one chip but U-M researchers have built a tiny silicon-compatible antenna and frequency resonator that will do just that.

The antenna and resonator are two of the most problematic off-chip components in wireless systems. The two components require large amounts of space off the chip—think of a cell phone antenna extending outward—thus limiting how small a device can be built.

Until now, small antennas weren't power efficient and resonators were not accurate, said Kamal Sarabandi, director of the radiation laboratory in electrical engineering and computer science (EECS). His research group developed the antenna.

The technology is being developed for use in environmental sensors, but could be applied to cell phones, laptops and other wireless devices, said Michael Flynn, head of the wireless interface group.

"We could have cell phones almost the size of an earpiece," Flynn said. "You could have sensor nodes that are almost invisible, you could just sprinkle them around."

Rather than using a traditional wire antenna, researchers built a slot antenna. In a slot antenna, instead of the metal wire, imagine covering an entire plane with metal, leaving only a slot or groove in the metal bare. Wire surrounds the groove so it’s much more effective at radiating electromagnetic waves in a small antenna, Sarabandi said. Because of the antenna’s shape, the wireless system does not need a network to match the antenna’s frequency to the rest of the electronic device.

Sarabandi’s group has been talking with Intel about a possible collaboration. Intel is interested in using the technology in laptop computers, Sarabandi said.

The second component U-M scientists replaced is the quartz frequency resonator, which allows a wireless device to focus on a specific signal and ignore others. The work was done by EECS Prof. Clark Nguyen’s group.

Instead of quartz, U-M scientists used MEMS-based technology to build the resonator so it can be fitted onto the chip. It functions similarly to how the rim of a wine glass thrums when flicked by a finger. The wine-glass rim design helps retain the purity of the signal.

Source: University of Michigan

Explore further: Patent talk: Wireless charging using Wi-Fi routers

Related Stories

Patent talk: Wireless charging using Wi-Fi routers

April 28, 2017

(Tech Xplore)—We all like hearing about suggestions on how we could cut the time-outs and cords and forget about the docks to keep our phones running. What about having in hand a method where you can charge an iPhone wirelessly ...

Building a wireless micromachine

September 20, 2016

All around us, hiding just outside our range of vision, are miniscule machines. Tiny accelerometers in our cars sense a collision and tell the airbags to inflate. A Nintendo Wii controller's tiny gyroscopes translate your ...

Enhanced wireless technology for body implants and sensors

July 18, 2013

Body implants such as pacemakers and hearing aids have been used to counter organ dysfunction for decades. The WISERBAN project is making a giant leap in their development: aiming to provide smarter communications among such ...

Wireless Power Supplies Using Magnetic Resonance

May 13, 2010

(PhysOrg.com) -- Until now domestic manufacturers and research institutions have only been focused on the concept that magnetic resonance could be used for wireless power supplies. Companies like Sony Corp. and Toshiba Corp. ...

Recommended for you

AI and 5G in focus at top mobile fair

February 24, 2018

Phone makers will seek to entice new buyers with better cameras and bigger screens at the world's biggest mobile fair starting Monday in Spain after a year of flat smartphone sales.

Walking crystals may lead to new field of crystal robotics

February 23, 2018

Researchers have demonstrated that tiny micrometer-sized crystals—just barely visible to the human eye—can "walk" inchworm-style across the slide of a microscope. Other crystals are capable of different modes of locomotion ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.