Using Carbon Nanotubes For Quantum Computing

July 15, 2004

The computing community for many years has longed to be able to to carry out high speed calculations using a genuine Quantum Computer because it would facilitate the practical factorisation of very large numbers and the searching of unordered lists and databases. The rapid breaking of secure codes based on prime numbers would have a lot of practical applications particularly in the banking and military field and would necessitate the development of new cryptographic and security methods to protect valuable data.

Academics working in the Department of Material Science at the University of Oxford have successfully developed a design protocol for inserting filled molecules of Buckminsterfullerene (“Buckyballs”) into carbon, and other types of nanotube. The Buckyballs are themselves filled with molecules that have either an electronic or structural property which can be used to represent the quantum bit (Qubit) of information, and which can be associated with other adjacent Qubits. The improved stability of the system now allows several thousand operations to be executed before quantum interference occurs (“decoherence”). Intensive collaborative work is continuing in order to develop the protocol into a working computer.

Source: Isis Innovation Ltd

Explore further: The doubly magic nucleus of lead-208—it spins, though it shouldn't

Related Stories

Getting hold of quantum dot biosensors

August 22, 2017

Quantum dots (QDs) have found so many applications in recent years, they can now be purchased with a variety of composite structures and configurations. Some are available suspended in a biologically friendly fluid, making ...

Atoms and molecules on the same wavelength

May 13, 2014

(Phys.org) —It may be surprising, but in physics the terrain of atoms and the territory of organic molecules are worlds apart. Therefore, in order to have a molecule communicate optically with atoms, the physicists must ...

It's a beauty: JILA's quantum crystal is now more valuable

November 5, 2015

Physicists at JILA have made their "quantum crystal" of ultracold molecules more valuable than ever by packing about five times more molecules into it. The denser crystal will help scientists unlock the secrets of magnets ...

Recommended for you

Fingertips found to respond differently to different surfaces

September 26, 2017

(Phys.org)—A team of researchers from the University of Birmingham, Sorbonne Universités and Unilever Research & Development Port Sunlight, has found that human fingertips behave differently when touching something depending ...

The fastest light-driven current source

September 26, 2017

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons controlled at high speed. Demands on transmission speeds are also increasing as technology develops. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.