In-Plane Spectral Weight Shift of Charge Carriers in YBa2Cu3O6.9

May 1, 2004
yba2cu3o7

The mechanism of high-temperature superconductivity is one of the main unsolved problems in condensed-matter physics. A. V. Boris et al. from Max-Planck-Institut, Germany present their study of YBa2Cu3O6.9 in this week Science issue (Science, Vol 304, Issue 5671, 708-710 , 30 April 2004).
YBa2Cu3O6.9 is a high-temperature superconductor with superconducting transition temperature of 92.7 Kelvin.

The mechanism of high-temperature superconductivity is one of the main unsolved problems in condensed-matter physics. An influential class of theories predicts that high-temperature superconductivity arises from an unconventional pairing mechanism driven by a reduction of the kinetic energy of the charge carriers in the superconducting state. This contrasts with the conventional Bardeen-Cooper-Schrieffer model, where correlations of the charge carriers below the superconducting transition temperature, Tc, bring about an increase in their kinetic energy, which is overcompensated for by a reduction of the potential energy due to the phonon-mediated attraction.

Precise optical data may thus enable one to address the issue of a kinetic energy–driven high-temperature superconductivity pairing mechanism.
In this research work YBa2Cu3O6.9 was studied with wide-band (0.01– to 5.6–electron volt) spectroscopic ellipsometry.

A superconductivity-induced transfer of the spectral weight involving a high-energy scale in excess of 1 electron volt was observed. Correspondingly, the charge carrier spectral weight was shown to decrease in the superconducting state.
The ellipsometric data also provided detailed information about the evolution of the optical self-energy in the normal and superconducting states.

Related Stories

Recommended for you

Political polarization? Don't blame the web, study says

September 19, 2017

Despite the popular narrative that the web is to blame for rising political polarization, a study by a Brown University economist has found that recent growth in polarization is greatest for demographic groups in which individuals ...

New quasar discovered by astronomers

September 19, 2017

(Phys.org)—A team of astronomers led by Jacob M. Robertson of the Austin Peay State University in Clarksville, Tennessee has detected a new quasi-stellar object (QSO). They found the new quasar, designated SDSS J022155.26-064916.6, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.