Greatly Improved Solar Cells

April 21, 2004
PbSeNQD

Victor Klimov and Richard Schaller at Los Alamos National Laboratory have enhanced the phenomenon called "impact ionization," which can significantly improve the efficiency of the conversion of solar energy to electrical current. Normally, an incident photon striking a semiconductor produces an electron-hole pair plus a bit of heat. By using sub-10-nm sized nanoparticles made of lead and selenium atoms, the Los Alamos scientists encourage the interaction to spawn a second exciton instead of the heat (see picture, which shows hi-resolution TEM image of epitaxially fused PbSe NanoQuantumDot pair.

Greatly improved solar cells might result from the use of a photophysical process in which for each incident solar photon not one but two excitons (electron-hole pairs) are created, says Physics News Update. As with photosynthesis what happens in a solar cell is the conversion of light energy into a small current of electrons; in plants the freed electrons helps to build glucose; in solar cells the currents are collected in the form of electricity.

Although they haven't yet built a working solar cell, they are the first to demonstrate the efficacy of getting the PbSe nanocrystals to render more photo-current. Implementing the new process might result in efficiency gains of more than 35% in the conversion of light to current. (Physical Review Letters, upcoming article)

See also the group website.

Explore further: New power generation and propulsion system for satellites

Related Stories

New power generation and propulsion system for satellites

January 18, 2018

Researchers at the Universidad Carlos III de Madrid (UC3M) and the Universidad Politécnica de Madrid have designed and patented a new propellantless system for satellites that allows generation of electric power and on-board ...

Halogens can increase solar cell performance by 25 per cent

December 20, 2017

New research from the University of British Columbia and the University of North Carolina at Chapel Hill shows that using halogens—a class of elements that include fluoride, bromine, chlorine and iodine—in a dye-sensitized ...

Recommended for you

Cells lacking nuclei struggle to move in 3-D environments

January 20, 2018

University of North Carolina Lineberger Comprehensive Cancer Center researchers have revealed new details of how the physical properties of the nucleus influence how cells can move around different environments - such as ...

Information engine operates with nearly perfect efficiency

January 19, 2018

Physicists have experimentally demonstrated an information engine—a device that converts information into work—with an efficiency that exceeds the conventional second law of thermodynamics. Instead, the engine's efficiency ...

Team takes a deep look at memristors

January 19, 2018

In the race to build a computer that mimics the massive computational power of the human brain, researchers are increasingly turning to memristors, which can vary their electrical resistance based on the memory of past activity. ...

Fast computer control for molecular machines

January 19, 2018

Scientists at the Technical University of Munich (TUM) have developed a novel electric propulsion technology for nanorobots. It allows molecular machines to move a hundred thousand times faster than with the biochemical processes ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.