Physical Review Letters (PRL), established in 1958, is a peer reviewed, scientific journal that is published 52 times per year by the American Physical Society. According to various measurement standards, which includes the Journal Citation Reports impact factor, Physical Review Letters is considered to be a prestigious journal in the field of physics. PRL is published as a print journal, and is in electronic format, online and CD-ROM. Its focus is rapid dissemination of significant, or notable, results of fundamental research on all topics related to all fields of physics. This is accomplished by rapid publication of short reports, called "Letters". Papers are published and available electronically one article at a time. When published in such a manner, the paper is available to be cited by other work. Three editors are listed for this journal: Jack Sandweiss, George Basbas, and Reinhardt B. Schuhmann. Physical Review Letters is an internationally read physics journal, describing a diverse readership. Advances in physics, as well as cross disciplinary developments, are disseminated weekly, via this publication. Topics covered by this journal are also the explicit titles for each

Publisher
American Physical Society
Country
United States
History
1958–present
Website
http://prl.aps.org/
Impact factor
7.328 (2009)

Some content from Wikipedia, licensed under CC BY-SA

Evidence of a new subatomic particle observed

The BESIII collaboration have reported the observation of an anomalous line shape around ppbar mass threshold in the J/ψ→γ3(π+π-) decay, which indicates the existence of a ppbar bound state. The paper was published ...

Study uses thermodynamics to describe expansion of the universe

The idea that the universe is expanding dates from almost a century ago. It was first put forward by Belgian cosmologist Georges Lemaître (1894–1966) in 1927 and confirmed observationally by American astronomer Edwin Hubble ...

Internet can achieve quantum speed with light saved as sound

Researchers at the University of Copenhagen's Niels Bohr Institute have developed a new way to create quantum memory: A small drum can store data sent with light in its sonic vibrations, and then forward the data with new ...

New advances promise secure quantum computing at home

The full power of next-generation quantum computing could soon be harnessed by millions of individuals and companies, thanks to a breakthrough by scientists at Oxford University Physics guaranteeing security and privacy. ...

Nano-oscillator hits record quality factor

In their latest study, a team led by Tracy Northup at the Department of Experimental Physics unveils the successful creation of a levitated nanomechanical oscillator with an ultra-high quality factor, significantly surpassing ...

Cracking the quantum code: Simulations track entangled quarks

Today, the word "quantum" is everywhere—in company names, movie titles, even theaters. But at its core, the concept of a quantum—the tiniest, discrete amount of something—was first developed to explain the behavior ...

page 1 from 4