2 Grand Challenges Explorations grants for global health

May 11th, 2012
The innovative research of three Northwestern University professors who are making a big difference in the highly promising area of synthetic biology has been recognized with two early-stage discovery awards from Grand Challenges Explorations, an initiative funded by the Bill & Melinda Gates Foundation.

The global health projects will focus on creating new compounds to combat malaria and on producing biosensors for low-cost, in-home diagnoses.

The prestigious awards are two of 107 Grand Challenges Explorations (GCE) grants announced this week. The funding supports scientists, researchers and entrepreneurs worldwide who are testing unconventional ideas that show great promise to improve the health of people in the developing world.

Northwestern now has received a total of three GCE grants as part of the Gates Foundation's call to "Apply Synthetic Biology to Global Health Challenges." (Synthetic biology is the design and construction of new types of biological systems.) To date, only 30 synthetic biology grants have been awarded as part of this initiative, acknowledging Northwestern as being at the forefront of its use to address global health issues.

"The Gates Foundation support allows us to pursue high-risk, high-reward projects that are utilizing cutting-edge techniques to engineer biological systems," said Keith Tyo, an investigator on all three grants. "Success on any one of these projects could result in a dramatic improvement in quality of life for millions of suffering people."

Tyo is an assistant professor of chemical and biological engineering in the McCormick School of Engineering and Applied Science.

Andreas Matouschek, professor of molecular biosciences in the Weinberg College of Arts and Sciences, and Tyo will develop synthetic compounds that target essential proteins in the Plasmodium parasite for destruction by its own protein degradation mechanisms. This strategy could lead to new treatment modalities as well as small molecule drug development efforts to combat malaria.

In the other project, Tyo and Joshua Leonard, an assistant professor of chemical and biological engineering, will work to engineer yeast-based biosensors that identify protein biomarkers in samples like blood and urine. An array of yeast strains could serve as a low-cost, in-home device providing patients with a panel of diagnostics to improve treatment and diagnosis in resource-poor settings.

Each project will receive an 18-month grant of $100,000. Successful projects have an opportunity to receive a second grant of up to $1 million.

"Grand Challenges Explorations encourages individuals worldwide to expand the pipeline of ideas where creative, unorthodox thinking is most urgently needed," said Chris Wilson, director of Global Health Discovery and Translational Sciences at the Bill & Melinda Gates Foundation. "We're excited to provide additional funding for select grantees so that they can continue to advance their idea towards global impact."

Synthetic biology researchers at Northwestern are leading a new wave of design-based biological engineering, exploring three major areas: biomolecular networks, cellular devices and therapeutics, and approaches that expand the chemistry of life. The engineers, scientists and physicians represent three schools -- McCormick, Weinberg and the Feinberg School of Medicine.

Provided by Northwestern University

This Phys.org Science News Wire page contains a press release issued by an organization mentioned above and is provided to you “as is” with little or no review from Phys.Org staff.

More news stories

Jurassic Welsh mammals were picky eaters, study finds

For most people, mere mention of the word Jurassic conjures up images of huge dinosaurs chomping their way through lush vegetation – and each other. However, mammals and their immediate ancestors were also ...

Uranium exposure tied to lupus

(HealthDay)—High uranium exposure is associated with systemic lupus erythematosus (SLE), according to a study published online Aug. 7 in Arthritis & Rheumatology.