This Science News Wire page contains a press release issued by an organization and is provided to you "as is" with little or no review from Science X staff.

Large-scale field-effect transistors based on solution-grown organic single crystals fabricated

June 29th, 2015
Large-scale field-effect transistors based on solution-grown organic single crystals are fabricated
Experimental procedure to achieve crystal alignment. Credit: ©Science China Press

Field-effect transistors (FETs) made of organic single crystals show superior mobility values as organic single crystals have fewer structural defects than their amorphous and polycrystalline counterparts. However, single-crystal devices are practically difficult to fabricate. For both fundamental studies and technological applications, high-throughput fabrication of single-crystal FETs is highly desired for either examination of device performance statistics or realization of a large array of devices and has attracted the attention of researchers from both academia and industry.

In an article published in Science Bulletin, Prof. Hanying Li's research group describe a simple solution processing method where well-aligned single-crystals of organic semiconductors throughout a 1cm × 2cm substrate can be grown from a droplet pinned by a metal needle. The well-controlled alignment of the crystals originates from the unidirectional receding of the pinned droplet regulated by the capillary force. Because of the crystal alignment in a large area, fabrication of device arrays become possible. More importantly, this simple method is applicable to a wide range of organic semiconductors and potentially to inorganic materials, with six examples including both p- and n-channel materials demonstrated in this work.

Furthermore, large-scale FET arrays are fabricated and studied, using TIPS-pentacene crystals (a well-known p-channel material) as an example. Among the 330 devices randomly selected from 2 substrates, an average hole mobility (μ) of 3.44 ± 1.21 cm2V-1s-1 with the maximum value of 6.46 cm2V-1s-1, on-to-off current ratios (I on/I off) > 10 5, and threshold voltages (VT) between -20 to -58 V were achieved. Among the 330 devices, 328 FETs showed the mobility above 1 cm2V-1s-1, the other two were 0.94 cm2V-1s-1 and 0.92 cm2V-1s-1 respectively. The achieved FET performance is among the best reported ones. As such, this work provides a highly efficient, yet simple approach to evaluate the charge transport properties of organic semiconductors through examining the performance statistics of single-crystal devices.

More information:
Shuang Liu, Jiake Wu, Congcheng Fan, Guobiao Xue, Hongzheng Chen, Huolin L. Xin and Hanying Li, "Large-scale fabrication of field-effect transistors based on solution-grown organic single crystals," Science Bulletin, 2015, 60(12): 1122-1127. doi: 10.1007/s11434-015-0817-9

Provided by Science China Press

Citation: Large-scale field-effect transistors based on solution-grown organic single crystals fabricated (2015, June 29) retrieved 24 April 2024 from https://sciencex.com/wire-news/197032111/large-scale-field-effect-transistors-based-on-solution-grown-org.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.