Decades of research by MU scientist leads to advancements in nanotechnologies

December 11th, 2014
Nanotechnology is the study and engineering of matter and microscopic structures. These tiny systems continue to gain interest for their promise and commercial application. Henry C. "Hank" Foley, a researcher and administrator at the University of Missouri, is a pioneer in the study of nanoporous carbon, or tiny membranes and systems that allow energy sources to pass through or become stored in these structures. His analysis and scholarship in nanosystems and how they are composed continues to inform research fields of study including medicine, materials processing, energy and the environment.

For distinguished contributions to the synthetic and physical chemistry of nanoscale carbons and nanoporous membranes and for outstanding service in university administration, Foley has been named a Fellow of the American Association for the Advancement of Science (AAAS). Election as an AAAS Fellow is an honor bestowed upon AAAS members by their peers. This year, 401 members were awarded the honor by AAAS due to their scientifically or socially distinguished efforts to advance science or its applications.

"I am both honored and humbled by this recognition from the best of my scientific colleagues," Foley said.

Foley, senior vice chancellor, Office of Research, University of Missouri, has worked for more than 30 years to advance the study of nanotechnology. He is an inventor with 16 patents that include a plasma reactor that aids in transforming industrial materials into finished products, carbon membranes for small or large molecule separations and new kinds of carbon materials. He has authored more than 120 peer-reviewed articles on topics such as adsorption, a process that is useful in energy storage including hydrogen and natural gas, and nanoporous carbon.

"Our research is important because we were among the first to really tackle nanoporous carbon usefulness and utility," Foley said. "We knew the importance of this technology early; today hundreds of researchers are continuing this work. Once the National Science Foundation took an interest in our research, the results became much more significant. I'm delighted to see how much the field has grown. A need for deep science still exists as well as tremendous opportunities in developing more efficient energy storage and carbon dioxide abatement. Our nanoporous carbon research will be important in global efforts to decrease carbon emissions and create a healthier environment."

Foley also serves as executive vice president for academic affairs, research and economic development for the University of Missouri System. Earlier this year, he holds numerous memberships in professional and honorary societies, including the American Society for Cybernetics, the Computing Research Association, Sigma Xi, Phi Lambda Upsilon and Sigma Pi Sigma. He was a founding member of the American Institute of Chemical Engineers (AIChE) Catalysis and Reaction Engineering Division and served as its chair. He is a member of the Cosmos Club in Washington, D.C., is a member of the American Association for the Advancement of Science and recently was elected a fellow of the Industrial and Engineering Division of the American Chemical Society as well as a fellow of the National Academy of Inventors.

Foley earned a master's degree in chemistry from Purdue University and a doctoral degree in physical and inorganic chemistry from Pennsylvania State University. Foley served on the University of Delaware chemical engineering faculty for 14 years before returning to Penn State in 2000. In his tenure at Penn State, Foley served as department head, associate vice president for research and director of strategic initiatives, and dean of the College of Information Sciences and Technology. He has extensive industry experience, including working for American Cyanamid and consulting with companies such as Westvaco, Air Products, Monsanto, DuPont and Engelhard Corporation.

Provided by University of Missouri-Columbia

This Phys.org Science News Wire page contains a press release issued by an organization mentioned above and is provided to you “as is” with little or no review from Phys.Org staff.

More news stories

Cow gene study shows why most clones fail

It has been 20 years since Dolly the sheep was successfully cloned in Scotland, but cloning mammals remains a challenge. A new study by researchers from the U.S. and France of gene expression in developing clones now shows ...