This Science News Wire page contains a press release issued by an organization and is provided to you "as is" with little or no review from Science X staff.

James Collins to receive the 2015 HFSP Nakasone Award

September 8th, 2014

The Human Frontier Science Program Organization (HFSPO) has announced that the 2015 HFSP Nakasone Award has been conferred upon James Collins of Boston University and Harvard's Wyss Institute for his innovative work on synthetic gene networks and programmable cells which launched the exciting field of synthetic biology.

The HFSP Nakasone Award was established to honour scientists who have made key breakthroughs in fields at the forefront of the life sciences. It recognizes the vision of former Prime Minister Nakasone of Japan in the creation of the Human Frontier Science Program. James Collins will present the HFSP Nakasone Lecture at the 15th annual meeting of HFSP awardees to be held in La Jolla, California, in July 2015.

James Collins was one of the first to show that one can engineer biological circuits out of proteins, genes and other bits of DNA. He designed and constructed a genetic toggle switch - a bistable gene circuit with broad implications for biomedicine and biotechnology. This work represents a landmark in the beginnings of synthetic biology. He showed that synthetic gene networks can be used as regulatory modules and interfaced with the cell's genetic circuitry to create programmable cells for biomedical and biotech applications. Along these lines, Collins has developed whole-cell biosensors to detect various stimuli (chemicals, pathogens, heavy metals, explosives), as well as synthetic probiotics to detect and treat infections (e.g., cholera). Collins has also designed and constructed RNA switches, genetic counters, programmable microbial kill switches, synthetic bacteriophages to combat bacterial infections, genetic switchboards for metabolic engineering, synthetic mRNA for stem cell reprogramming, and tunable mammalian genetic switches.

Collins' innovative work in synthetic biology is impacting the biosciences and the biotech industry in providing one of the key enabling technologies of the 21st century. His engineered gene circuits and synthetic biology technology have been utilized by multiple companies in diverse fields ranging from agriculture to drug discovery. His work has inspired scientists around the world and enabled multiple biomedical applications, including in vivo bio-sensing, antibiotic potentiation, biofilm eradication, drug target identification and validation, microbiome reengineering, and efficient stem cell reprogramming and differentiation. Collins' mammalian switch technology is being used by research groups worldwide and his programmable microbial kill switch was highlighted by President Obama's Bioethics Commission as a much-needed safeguard for real-world applications of synthetic biology.

The work of James Collins is advancing, if not defining, the emerging discipline of synthetic biology, and his path-blazing research on synthetic gene networks and programmable cells is transforming the life sciences and expanding our ability to study and harness complex mechanisms of living organisms.

Provided by Human Frontier Science Program

Citation: James Collins to receive the 2015 HFSP Nakasone Award (2014, September 8) retrieved 19 April 2024 from https://sciencex.com/wire-news/171625367/james-collins-to-receive-the-2015-hfsp-nakasone-award.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.