Department of Defense funds terahertz-range metamaterials research

May 16th, 2014
Metamaterials research having potential applications in high-speed data transmission, medical imaging and other kinds of imaging and remote sensing is the focus of a U.S. Department of Defense project funded for five years at $7.5 million.

Penn State is part of this six-member Multi-University Research Initiative by the Air Force Office of Scientific Research. The project is led by Mark Cappelli, professor of mechanical engineering, Stanford University. Also collaborating with Stanford are the University of Texas at Austin, Tufts University, UCLA and the University of Washington.

Penn State researchers will focus on the fundamental science necessary to develop plasma photonic crystals and plasma-embedded metamaterials that operate in the terahertz range. Terahertz is the region of the electromagnetic spectrum that lies between far infrared and microwave, and is a nonionizing frequency invisible to the human eye. This regime is already being used in airport surveillance and astronomy.

The researchers will generate the plasmas inside holes in the metamaterial arrays using radio frequency excitation with the entire device encapsulated in an inert gas. Using micro-lens arrays, focused lasers will generate very dense, highly ionized plasma arrays. Unlike the metal structures of typical metamaterials, researchers can control a plasma's dielectric properties by varying the plasma density. Plasmas afford the possibility of controlling metamaterials at high bandwidth. This will enable such applications as antennas with beam steering, filter devices, multiplexers, phase shifters and electro-optical modulators.

Researchers at Penn State will be the primary team charged to develop a new class of low-loss dielectric resonators and multilayer low temperature co-fired ceramics to replace the usual metallic split-ring resonators found in traditional metamaterial structures. Metamaterials are artificial structures with sub-wavelength features that can interact with electromagnetic waves in a manner unlike that of natural materials. Long-term goals of metamaterials research include invisibility cloaking devices and perfect lenses to capture short-range light waves for fine detail light microscopy.

The principal investigators at Penn State are Clive Randall, professor of materials science and engineering, and Michael Lanagan, professor of engineering science and mechanics. The Penn State team members are pioneers in the development of dielectric materials and leaders in the long-running Center for Dielectric Studies, an industry supported research center that recently was renewed with technical new opportunities with North Carolina State University as the NSF I/UCRC Center for Dielectrics and Piezoelectrics.

Provided by Pennsylvania State University

This Science News Wire page contains a press release issued by an organization mentioned above and is provided to you “as is” with little or no review from Phys.Org staff.

More news stories

Physicists discuss quantum pigeonhole principle

The pigeonhole principle: "If you put three pigeons in two pigeonholes at least two of the pigeons end up in the same hole." So where's the argument? Physicists say there is an important argument. While the ...

Giant anteaters kill two hunters in Brazil

Giant anteaters in Brazil have killed two hunters in separate incidents, raising concerns about the animals' loss of habitat and the growing risk of dangerous encounters with people, researchers said.

US plans widespread seismic testing of sea floor

(AP)—The U.S. government is planning to use sound blasting to conduct research on the ocean floor along most of the East Coast, using technology similar to that which led to a court battle by environmentalists in New Jersey.

NASA Mars spacecraft prepare for close comet flyby

NASA is taking steps to protect its Mars orbiters, while preserving opportunities to gather valuable scientific data, as Comet C/2013 A1 Siding Spring heads toward a close flyby of Mars on Oct. 19.

Study shows epigenetic changes can drive cancer

Cancer has long been thought to be primarily a genetic disease, but in recent decades scientists have come to believe that epigenetic changes – which don't change the DNA sequence but how it is 'read' – also play a role ...