NSF funds Harvard-led Science and Technology Center for Integrated Quantum Materials

September 25th, 2013
The National Science Foundation (NSF) recently awarded $20 million to fund a new Science and Technology Center, the Center for Integrated Quantum Materials. During the next five years, the multi-institution center will support science and education programs that explore the unique electronic behavior of quantum materials.

Researchers will examine materials such as graphene, a potential replacement for silicon in today's computer chips. Graphene is thinner, lighter and stronger and may work at room temperature, which could eliminate the need for bulky cooling apparatus in computers of all sizes.

"As we move into a post-silicon age, quantum materials are an emerging technology with enormous promise for science and engineering and for our country's overall economy in the form of new products and business opportunities," said Robert M. Westervelt, Mallinckrodt Professor of Applied Physics and Physics at Harvard, who will lead the center. "The scientists collaborating on this project have a vision of future quantum materials and quantum devices—new devices and systems that were not conceived to be possible 10 years ago. This line of research promises an impressive trajectory over the coming decades."

"All ingredients for substantive scientific progress are present in the Center for Integrated Quantum Materials," said Daniele Finotello, NSF program director for Materials Research Science and Engineering Centers, and technical adviser for the award. "Originality, creativity and depth, breadth and diversity of scientific ideas of participating scientists and of contributing institutions—we look forward to exciting discoveries and future applications in the years ahead."

The Harvard-led Center for Integrated Quantum Materials will draw on expertise in materials synthesis, nanofabrication, characterization and device physics by partnering with the Massachusetts Institute of Technology, Museum of Science in Boston and Howard University in Washington, D.C.

"The integration of expertise and partners across diverse disciplines and institutions bodes well for the success of the Center for Integrated Quantum Materials in realizing breakthroughs in this important field." said NSF program director Dragana Brzakovic, who manages NSF's Science and Technology Centers program.

The center will also encourage students to pursue careers in science and engineering through an affiliated college network that will attract students from diverse backgrounds to science and engineering and provide them with unique opportunities for scholarship and leadership. Two prestigious women's colleges, Mount Holyoke and Wellesley, as well as Gallaudet University, which focuses on undergraduate liberal arts education, career development and graduate programs for the deaf, will engage young people who are traditionally less represented in science and engineering. Massachusetts' Bunker Hill Community College, with its special recruitment program for military veterans, and Olin College of Engineering, with its technical focus, will each bring different perspectives to the collaboration, as will Prince's George's Community College in Maryland.

The new Center for Integrated Quantum Materials is funded as part of NSF's Science and Technology Center (STC) program, which supports integrative partnerships that require large-scale, long-term investments to pursue world class research and education. Existing STCs study a wide range of complex scientific topics, such as atmospheric modeling, life beneath the sea floor, energy-efficient electronics, water purification techniques and cybersecurity. Harvard's proposal was one of three selected this year through a merit-based competition.

Provided by National Science Foundation

This Phys.org Science News Wire page contains a press release issued by an organization mentioned above and is provided to you “as is” with little or no review from Phys.Org staff.

More news stories

New nanomaterial maintains conductivity in 3-D

An international team of scientists has developed what may be the first one-step process for making seamless carbon-based nanomaterials that possess superior thermal, electrical and mechanical properties in three dimensions.

How nature punches back at giant viruses

(Phys.org)—What have viruses ever done for humans? The question is debatable, but given the prevalence of highly contagious, and sometimes life-threatening illnesses caused by viruses, it's fair to say that most people ...

Secrets of a heat-loving microbe unlocked

Scientists studying how a heat-loving microbe transfers its DNA from one generation to the next say it could further our understanding of an extraordinary superbug.

Plants also suffer from stress

High salt in soil dramatically stresses plant biology and reduces the growth and yield of crops. Now researchers have found specific proteins that allow plants to grow better under salt stress, and may help breed future generations ...