Ocean acidification: Making new discoveries through National Science Foundation research grants

September 3rd, 2013
Ocean acidification: Making new discoveries through National Science Foundation research grants
NSF awardees will study how ocean acidification affects anemones and symbiotic algae. Credit: NOAA
With increasing levels of carbon dioxide accumulating in the atmosphere and moving into marine systems, the world's oceans are becoming more acidic.

The oceans may be acidifying faster today than at any time in the past 300 million years, scientists have found.

To address the concern for acidifying marine ecosystems, the National Science Foundation (NSF) has awarded new grants totaling $12 million in its Ocean Acidification Program.

The program is part of NSF's Science, Engineering and Education for Sustainability (SEES) investment.

The awards, the third round in this program, are supported by NSF's Directorates for Geosciences and Biological Sciences.

"These new awards will expand the scope of our knowledge about the types of marine organisms, populations, communities, and ecosystems that may be affected in unique ways by a more acidic ocean," says David Conover, director of NSF's Division of Ocean Sciences.

From tropical oceans to icy seas, the projects will foster research on the nature, extent and effects of ocean acidification on marine environments and organisms in the past, present and future.

"NSF is excited to add these high-quality research projects to our growing ocean acidification award portfolio," says David Garrison, program director in NSF's Directorate for Geosciences and chair of NSF's Ocean Acidification Working Group.

Ocean acidification affects marine ecosystems, organisms' life histories, ocean food webs and biogeochemical cycling, scientists have discovered.

Researchers believe there is a need to understand the chemistry of ocean acidification and its interplay with marine biochemical and physiological processes, before Earth's seas become inhospitable to life as we know it.

Animal species from pteropods—delicate, butterfly-like planktonic drifters—to hard corals are affected by ocean acidification. So, too, are the unseen microbes that fuel ocean productivity and influence the chemistry of ocean waters.

As the oceans become more acidic, the balance of molecules needed for shell-bearing organisms to manufacture shells and skeletons is altered.

The physiology of many marine species, from microbes to fish, may be affected. Myriad chemical reactions and cycles are influenced by the pH, or acidity, of the oceans.

The newly funded projects include studies of whether populations of animals have the genetic capacity to adapt to ocean acidification. The findings, scientists say, will yield new insights about how a future more acidic ocean will affect marine life.

"These awards will extend our understanding of the physiological abilities of organisms to adjust to acidifying oceans in the near-term, and the evolutionary capacities of populations to adapt to predicted ocean acidification in the next century," says William Zamer, program director in NSF's Directorate for Biological Sciences.

Has ocean life faced similar challenges in our planet's past?

"Earth system history informs our understanding of the effects of ocean acidification in the present and the future," says Garrison.

Ocean acidification: Making new discoveries through National Science Foundation research grants
Decreased ocean pH will affect coral reef habitats and the organisms that call them home. Credit: NOAA
For a true comprehension of how acidification will change the oceans, he says, we need to integrate paleoecology with marine chemistry, physics, ecology and an understanding of the past environmental conditions on Earth.

NSF Ocean Acidification Program grantees will ask questions such as: Will regional differences in marine chemistry and physics increase acidification? Are there complex interactions, cascades and bottlenecks that will emerge as the oceans acidify, and what are their ecosystem implications? And if current trends continue, how far-reaching will the changes be?

NSF 2013 Ocean Acidification awardees, their institutions and projects are:

Stephen Archer, Bigelow Laboratory for Ocean Sciences, Ocean acidification: Influence of ocean acidification on biotic controls of DMS emissions

Additional Collaborators: Patricia Matrai and Peter Countway, Bigelow Laboratory for Ocean Sciences

Andrew Esbaugh, University of Texas Austin, Ocean acidification: Implications for respiratory gas exchange and acid-base balance in estuarine fish

Brian Hopkinson, University of Georgia, Ocean acidification: Coral inorganic carbon processing in response to ocean acidification

Additional Collaborators: Christof Meile, William Fitt and Yongchen Wang, University of Georgia

Janet Kubler, California State University, RUI: Ocean acidification: Scope for resilience to ocean acidification in macroalgae

Additional Collaborators: Steven Dudgeon, California State University

Gareth Lawson, Woods Hole Oceanographic Institution, Ocean acidification: Seasonal and ontogenetic effects of ocean acidication on pteropods in the Gulf of Maine

Additional Collaborators: Ann Tarrant and Amy Maas, Woods Hole Oceanographic Institution

Francois Morel, Princeton University, Ocean acidification: Effect on the availability of divalent trace metals to phytoplankton

James Morris, Michigan State University, Collaborative research: Ocean acidification: Impacts of evolution on the response of phytoplankton populations to rising CO2

Ocean acidification: Making new discoveries through National Science Foundation research grants
Encrusting red algae are likely to be affected by ocean acidification. Credit: NOAA
Additional Collaborators: Richard Lenski, Michigan State University

Sonya Dyhrman, Columbia University, Collaborative research: Ocean acidification: Impacts of evolution on the response of phytoplankton populations to rising CO2

Michael Follows, Massachusetts Institute of Technology, Collaborative Research: Ocean acidification: Impacts of evolution on the response of phytoplankton populations to rising CO2

Monica Orellana, Institute for Systems Biology, Ocean acidification: A systems biology approach to characterize diatom response to ocean acidification and climate change

Additional Collaborators: Nitin Baliga, Institute for Systems Biology

Brad Seibel, University of Rhode Island, Ocean acidification: Oxygen-limited CO2 tolerance in squids (Ommastrephidaw and Loliginidae)

Wade McGillis, Columbia University, Ocean acidification: Collaborative research: Quantifying the potential for biogeochemical feedbacks to create 'refugia' from ocean acidification on tropical coral reefs

Jennifer Smith, University of California San Diego, Scripps Institution of Oceanography, Ocean acidification: Collaborative research: Quantifying the potential for biogeochemical feedbacks to create 'refugia' from ocean acidification on tropical coral reefs

Additional Collaborators: Todd Martz, University of California, San Diego, Scripps Institution of Oceanography

Steneck, Robert, University of Maine, Century scale impacts to ecosystem structure and function of Aleutian Kelp forests

Axel Timmerman, University of Hawaii, Understanding large-scale patterns of future ocean acidification

Mark Warner, University of Delaware, Ocean acidification: Understanding the impact of CO2 and temperature on the physiological, genetic, and epigenetic response of a model sea anemone system with different symbionts

Additional Collaborators: Adam Marsh, University of Delaware

Provided by National Science Foundation

This Phys.org Science News Wire page contains a press release issued by an organization mentioned above and is provided to you “as is” with little or no review from Phys.Org staff.

More news stories

Microsoft describes hard-to-mimic authentication gesture

Photos. Messages. Bank account codes. And so much more—sit on a person's mobile device, and the question is, how to secure them without having to depend on lengthy password codes of letters and numbers. Vendors promoting ...

Netherlands bank customers can get vocal on payments

Are some people fed up with remembering and using passwords and PINs to make it though the day? Those who have had enough would prefer to do without them. For mobile tasks that involve banking, though, it is obvious that ...

How bees naturally vaccinate their babies

When it comes to vaccinating their babies, bees don't have a choice—they naturally immunize their offspring against specific diseases found in their environments. And now for the first time, scientists have discovered how ...

Earth flyby of 'space peanut' captured in new video

NASA scientists have used two giant, Earth-based radio telescopes to bounce radar signals off a passing asteroid and produce images of the peanut-shaped body as it approached close to Earth this past weekend.

Image: Hubble sees a dying star's final moments

A dying star's final moments are captured in this image from the NASA/ESA Hubble Space Telescope. The death throes of this star may only last mere moments on a cosmological timescale, but this star's demise is still quite ...

Exoplanets 20/20: Looking back to the future

Geoff Marcy remembers the hair standing up on the back of his neck. Paul Butler remembers being dead tired. The two men had just made history: the first confirmation of a planet orbiting another star.

New blow for 'supersymmetry' physics theory

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

A cataclysmic event of a certain age

At the end of the Pleistocene period, approximately 12,800 years ago—give or take a few centuries—a cosmic impact triggered an abrupt cooling episode that earth scientists refer to as the Younger Dryas.