Surprising nature of quantum solitary waves revealed

Solitary waves – known as solitons – appear in many forms. Perhaps the most recognizable is the tsunami, which forms following a disruption on the ocean floor and can travel, unabated, at high speeds for hundreds of miles.

Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. ...

Watching a gas turn superfluid

Every time you boil water in a kettle, you witness a phenomenon known as a phase transition — water transforms from a liquid to a gas, as you can see from the bubbling water and hissing steam. MIT physicists have now ...

Modeling the bizarre: Quantum superfluids

(PhysOrg.com) -- More than 100 years since superconductivity was discovered, a comprehensive description for the behavior of a broad class of fundamental physical systems that exhibit the bizarre properties of superconductivity ...

Quantum tornado provides gateway to understanding black holes

Scientists have for the first time created a giant quantum vortex to mimic a black hole in superfluid helium that has allowed them to see in greater detail how analog black holes behave and interact with their surroundings.

Frictionless supersolid a step closer

Superfluid mixtures of atoms can boil and freeze at ultra-low temperatures. This freezing can result in the formation of supersolids of atoms that can flow alongside each other without friction, but are still set in a fixed ...

Flatland physics probes mysteries of superfluidity

(Physorg.com) -- If physicists lived in Flatland—the fictional two-dimensional world invented by Edwin Abbott in his 1884 novel—some of their quantum physics experiments would turn out differently (not just thinner) than ...

page 5 from 11