Physicists reverse time using quantum computer

Researchers from the Moscow Institute of Physics and Technology teamed up with colleagues from the U.S. and Switzerland and returned the state of a quantum computer a fraction of a second into the past. They also calculated ...

Scientists discover new state of matter

A team of physicists has uncovered a new state of matter—a breakthrough that offers promise for increasing storage capabilities in electronic devices and enhancing quantum computing.

Thermodynamic magic enables cooling without energy consumption

Physicists at the University of Zurich have developed an amazingly simple device that allows heat to flow temporarily from a cold to a warm object without an external power supply. Intriguingly, the process initially appears ...

China's quest for clean, limitless energy heats up

A ground-breaking fusion reactor built by Chinese scientists is underscoring Beijing's determination to be at the core of clean energy technology, as it eyes a fully-functioning plant by 2050.

Physicists unveil a theory for a new kind of superconductivity

(PhysOrg.com) -- In this 100th anniversary year of the discovery of superconductivity, physicists at the University of Massachusetts Amherst and Sweden’s Royal Institute of Technology have published a fully self-consistent ...

Caltech announces discovery in fundamental physics

When the transistor was invented in 1947 at Bell Labs, few could have foreseen the future impact of the device. This fundamental development in science and engineering was critical to the invention of handheld radios, led ...

page 1 from 40

Superconductivity

Superconductivity is a phenomenon occurring in certain materials generally at very low temperatures, characterized by exactly zero electrical resistance and the exclusion of the interior magnetic field (the Meissner effect). It was discovered by Heike Kamerlingh Onnes in 1911. Like ferromagnetism and atomic spectral lines, superconductivity is a quantum mechanical phenomenon. It cannot be understood simply as the idealization of "perfect conductivity" in classical physics.

The electrical resistivity of a metallic conductor decreases gradually as the temperature is lowered. However, in ordinary conductors such as copper and silver, impurities and other defects impose a lower limit. Even near absolute zero a real sample of copper shows a non-zero resistance. The resistance of a superconductor, despite these imperfections, drops abruptly to zero when the material is cooled below its "critical temperature". An electric current flowing in a loop of superconducting wire can persist indefinitely with no power source.

Superconductivity occurs in a wide variety of materials, including simple elements like tin and aluminium, various metallic alloys and some heavily-doped semiconductors. Superconductivity does not occur in noble metals like gold and silver, nor in pure samples of ferromagnetic metals.

In 1986 the discovery of a family of cuprate-perovskite ceramic materials known as high-temperature superconductors, with critical temperatures in excess of 90 kelvin, spurred renewed interest and research in superconductivity for several reasons. As a topic of pure research, these materials represented a new phenomenon not explained by the current theory. In addition, because the superconducting state persists up to more manageable temperatures, past the economically-important boiling point of liquid nitrogen (77 kelvin), more commercial applications are feasible, especially if materials with even higher critical temperatures could be discovered.

See also the history of superconductivity.

This text uses material from Wikipedia, licensed under CC BY-SA