Experiments see first evidence of a rare Higgs boson decay

The discovery of the Higgs boson at CERN's Large Hadron Collider (LHC) in 2012 marked a significant milestone in particle physics. Since then, the ATLAS and CMS collaborations have been diligently investigating the properties ...

CERN facility takes a solid tick forward towards a nuclear clock

Atomic clocks are the world's most precise timekeepers. Based on periodic transitions between two electronic states of an atom, they can track the passage of time with a precision as high as one part in a quintillion, meaning ...

Probing fundamental symmetries of nature with the Higgs boson

Where did all the antimatter go? After the Big Bang, matter and antimatter should have been created in equal amounts. Why we live in a universe of matter, with very little antimatter, remains a mystery. The excess of matter ...

Random matrix theory approaches the mystery of the neutrino mass

When any matter is divided into smaller and smaller pieces, eventually all you are left with—when it cannot be divided any further—is a particle. Currently, there are 12 different known elementary particles, which in ...

Using dark matter distribution to test the cosmological model

An international team of astrophysicists and cosmologists at various institutes including the Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU) have submitted a set of five papers, measuring a value ...

ATLAS and CMS observe simultaneous production of four top quarks

Today, at the Moriond conference, the ATLAS and CMS collaborations have both presented the observation of a very rare process: the simultaneous production of four top quarks. They were observed using data from collisions ...

Improved ATLAS result weighs in on the W boson

The W boson, a fundamental particle that carries the charged weak force, is the subject of a new precision measurement of its mass by the ATLAS experiment at CERN.

Team first to detect neutrinos made by a particle collider

In a scientific first, a team led by physicists at the University of California, Irvine has detected neutrinos created by a particle collider. The discovery promises to deepen scientists' understanding of the subatomic particles, ...

page 6 from 40