New method of controlling qubits could advance quantum computers

Quantum computing, a field that relies on the principles of quantum mechanics to calculate outcomes, has the potential to perform tasks too complex for traditional computers and to do so at high speeds, making it in some ...

Researchers create order from quantum chaos

In a new paper in PNAS, "Triplet-Pair Spin Signatures From Macroscopically Aligned Heteroacenes in an Oriented Single Crystal," National Renewable Energy Laboratory (NREL) researchers Brandon Rugg, Brian Fluegel, Christopher ...

Atomically thin semiconductors for nanophotonics

Atomically thin semiconductors such as molybdenum disulfide and tungsten disulfide are promising materials for nanoscale photonic devices. These approximately 2D semiconductors support so-called excitons, which are bound ...

Lasers trigger magnetism in atomically thin quantum materials

Researchers have discovered that light—in the form of a laser—can trigger a form of magnetism in a normally nonmagnetic material. This magnetism centers on the behavior of electrons. These subatomic particles have an ...

page 2 from 11