Related topics: cern · large hadron collider · protons · neutrinos · light

Speed of light

The term speed of light generally refers to a fundamental physical constant of spacetime that limits the rate of transfer of matter or information. The speed of light is the speed of not just visible light, but of all electromagnetic radiation in vacuum (also called free space), and usually is denoted by the symbol c. Speeds faster than that of light are encountered in physics but, in all such cases, no matter or information is transmitted faster than c. The speed of light also plays a role in general relativity, and is believed to be the speed of gravitational waves.

In SI units, the magnitude of the speed of light in vacuum is exactly 299,792,458 metres per second (m/s) because of the way the metre is defined. More about this topic is found below in Speed of light set by definition.

For many practical purposes, the speed of light is so great that it can be regarded to travel instantaneously. An exception is where long distances or precise time measurements are involved. For example, in the Global Positioning System (GPS), a GPS receiver measures its distance to satellites based on how long it takes for a radio signal to arrive from the satellite. In astronomy, distances are often measured in light-years, the distance light travels in a year.

The speed of light when it passes through a transparent or translucent material medium, like glass or air, is less than its speed in vacuum. The speed is inversely proportional to the refractive index of the medium. In specially-prepared media, the speed can be tiny, or even zero.

For many years the speed of light was the subject of speculation, some believing it to be infinite. The first effective measurements of the speed of light were made in the seventeenth century, and these were progressively refined until, in 1983, the speed of light in vacuum was fixed by definition.

This text uses material from Wikipedia, licensed under CC BY-SA