Intracellular recordings using nanotower electrodes

Our current understanding of how the brain works is very poor. The electrical signals travel around the brain and throughout the body, and the electrical properties of the biological tissues are studied using electrophysiology. ...

3-D printing method advances electrically small antenna design

Omnidirectional printing of metallic nanoparticle inks offers an attractive alternative for meeting the demanding form factors of 3-D electrically small antennas. This is the first demonstration of 3-D printed antennas on ...

Comb of a lifetime: A new method for fluorescence microscopy

Fluorescence microscopy is widely used in biochemistry and life sciences because it allows scientists to directly observe cells and certain compounds in and around them. Fluorescent molecules absorb light within a specific ...

What happens when a quantum dot looks in a mirror?

The 2014 chemistry Nobel Prize recognized important microscopy research that enabled greatly improved spatial resolution. This innovation, resulting in nanometer resolution, was made possible by making the source (the emitter) ...

Electron-pair discovery advances field of quantum materials

In 2016, physicist J.C. Séamus Davis discovered an elusive state of quantum matter in the cuprates, which are copper oxide materials laced with other atoms. That launched a new sub-field in the study of quantum materials.

page 3 from 38