Related topics: neurons

Mapping the olfactory system in fruit flies

The distinctive smell of a flower… the unmistakable aroma of coffee… the dangers linked with inhaling smoke fumes. Sensory systems have evolved to provide us with immediate, finely tuned information about the world around ...

Free range mitochondria are coming for you

Transfer of mitochondria between cells is a ubiquitously occurring and now universally known phenomenon. For years, researchers have been serially demonstrating that one particular new cell type can transfer its mitos to ...

Graphene shown to safely interact with neurons in the brain

Researchers have successfully demonstrated how it is possible to interface graphene - a two-dimensional form of carbon - with neurons, or nerve cells, while maintaining the integrity of these vital cells. The work may be ...

The origins of polarized nervous systems

(Phys.org)—There is no mistaking the first action potential you ever fired. It was the one that blocked all the other sperm from stealing your egg. After that, your spikes only got more interesting. Waves of calcium flooding ...

page 1 from 7

Sensory neuron

Sensory neurons are neurons that are activated by sensory input (vision, touch, hearing, etc.), and send projections into the central nervous system that convey sensory information to the brain or spinal cord. Unlike neurons of the central nervous system, whose inputs come from other neurons, sensory neurons are activated by physical modalities such as light, sound, temperature, chemical stimulation, etc.

In complex organisms, sensory neurons relay their information to the central nervous system or in less complex organisms, such as the hydra, directly to motor neurons and sensory neurons also transmit information (electrical impulses) to the brain, where it can be further processed and acted upon. For example, olfactory sensory neurons make synapses with neurons of the olfactory bulb, where the sense of olfaction (smell) is processed.

At the molecular level, sensory receptors located on the cell membrane of sensory neurons are responsible for the conversion of stimuli into electrical impulses. The type of receptor employed by a given sensory neuron determines the type of stimulus it will be sensitive to. For example, neurons containing mechanoreceptors are sensitive to tactile stimuli, while olfactory receptors make a cell sensitive to odors.

This text uses material from Wikipedia, licensed under CC BY-SA