Related topics: solar cells

Cooking up a conductive alternative to copper with aluminum

In the world of electricity, copper is king—for now. That could change with new research from Pacific Northwest National Laboratory (PNNL) that is serving up a recipe to increase the conductivity of aluminum, making it ...

Making dark semiconductors shine

Whether or not a solid can emit light, for instance as a light-emitting diode (LED), depends on the energy levels of the electrons in its crystalline lattice. An international team of researchers led by University of Oldenburg ...

Sharp X-ray images despite imperfect lenses

X-rays make it possible to explore inside human bodies or peer inside objects. The technology used to illuminate the detail in microscopically small structures is the same as that used in familiar situations—such as medical ...

Tunable quantum traps for excitons

Researchers at ETH Zurich have succeeded for the first time in trapping excitons—quasiparticles consisting of negatively charged electrons and positively charged holes—in a semiconductor material using controllable electric ...

Electronic self-passivation of single vacancy in black phosphorus

NUS scientists discovered that a two-dimensional (2D) semiconducting material, known as black phosphorus (BP), exhibits an electronic self-passivation phenomenon by re-arranging its vacancy defects. This may potentially enhance ...

Synthesis of two-dimensional holey graphyne

Diamond and graphite are two naturally occurring carbon allotropes that we have known about for thousands of years. They are elemental carbons that are arranged in a manner so that they consist of sp3 and sp2 hybridized carbon ...

page 12 from 40