Physicists track sequential 'melting' of upsilons

Scientists using the Relativistic Heavy Ion Collider (RHIC) to study some of the hottest matter ever created in a laboratory have published their first data showing how three distinct variations of particles called upsilons ...

Data reveal a surprising preference in particle spin alignment

Given the choice of three different "spin" orientations, certain particles emerging from collisions at the Relativistic Heavy Ion Collider (RHIC), an atom smasher at the U.S. Department of Energy's (DOE) Brookhaven National ...

What triggers flow fluctuations in heavy-ion collision debris?

Scientists in the STAR collaboration at the Relativistic Heavy Ion Collider (RHIC)—an atom smasher at the U.S. Department of Energy's Brookhaven National Laboratory—have published a comprehensive analysis aimed at determining ...

Exploring the hidden charm of quark-gluon plasma

Quark–gluon plasma is an extremely hot and dense state of matter in which the elementary constituents—quarks and gluons—are not confined inside composite particles called hadrons, as they are in the protons and neutrons ...

page 2 from 10