Macroscopic quantum phenomena discovered in ice

(Phys.org)—Scientists have discovered an anomaly in the properties of ice at very cold temperatures near 20 K, which they believe can be explained by the quantum tunneling of multiple protons simultaneously. The finding ...

Exerting better control over matter waves

(PhysOrg.com) -- “The concept of matter waves is at the heart of quantum mechanics,” Oliver Morsch tells PhysOrg.com. “At the beginning of the last century, scientists discovered that solid particles could exhibit properties ...

Measuring how long quantum tunneling takes

A team of researchers at the University of Toronto has found a way to measure how long quantum tunneling takes to happen. In their paper published in the journal Nature, the group describes experiments they conducted and ...

Scientists create new recipe for single-atom transistors

Once unimaginable, transistors consisting only of several-atom clusters or even single atoms promise to become the building blocks of a new generation of computers with unparalleled memory and processing power. But to realize ...

Chemists observe 'spooky' quantum tunneling

A molecule of ammonia, NH3, typically exists as an umbrella shape, with three hydrogen atoms fanned out in a nonplanar arrangement around a central nitrogen atom. This umbrella structure is very stable and would normally ...

page 1 from 8

Quantum tunnelling

Wave-mechanical tunnelling (also called quantum-mechanical tunnelling, quantum tunnelling, and the tunnel effect) is an evanescent wave coupling effect that occurs in the context of quantum mechanics because the behaviour of particles is governed by Schrödinger's wave-equation. All wave equations exhibit evanescent wave coupling effects if the conditions are right. Wave coupling effects mathematically equivalent to those called "tunnelling" in quantum mechanics can occur with Maxwell's wave-equation (both with light and with microwaves), and with the common non-dispersive wave-equation often applied (for example) to waves on strings and to acoustics.

For these effects to occur there must be a situation where a thin region of "medium type 2" is sandwiched between two regions of "medium type 1", and the properties of these media have to be such that the wave equation has "traveling-wave" solutions in medium type 1, but "real exponential solutions" (rising and falling) in medium type 2. In optics, medium type 1 might be glass, medium type 2 might be vacuum. In quantum mechanics, in connection with motion of a particle, medium type 1 is a region of space where the particle total energy is greater than its potential energy, medium type 2 is a region of space (known as the "barrier") where the particle total energy is less than its potential energy - for further explanation see the section on "Schrödinger equation - tunnelling basics" below.

If conditions are right, amplitude from a traveling wave, incident on medium type 2 from medium type 1, can "leak through" medium type 2 and emerge as a traveling wave in the second region of medium type 1 on the far side. If the second region of medium type 1 is not present, then the traveling wave incident on medium type 2 is totally reflected, although it does penetrate into medium type 2 to some extent. Depending on the wave equation being used, the leaked amplitude is interpreted physically as traveling energy or as a traveling particle, and, numerically, the ratio of the square of the leaked amplitude to the square of the incident amplitude gives the proportion of incident energy transmitted out the far side, or (in the case of the Schrödinger equation) the probability that the particle "tunnels" through the barrier.

This text uses material from Wikipedia, licensed under CC BY-SA