Physicists reach qubit computing breakthrough

Researchers from Arizona State University and Zhejiang University in China, along with two theorists from the United Kingdom, have been able to demonstrate for the first time that large numbers of quantum bits, or qubits, ...

Engineering robust and scalable molecular qubits

The concept of "symmetry" is essential to fundamental physics: a crucial element in everything from subatomic particles to macroscopic crystals. Accordingly, a lack of symmetry—or asymmetry—can drastically affect the ...

Shrinking qubits for quantum computing with atom-thin materials

For quantum computers to surpass their classical counterparts in speed and capacity, their qubits—which are superconducting circuits that can exist in an infinite combination of binary states—need to be on the same wavelength. ...

Observing quantum coherence from photons scattered in free-space

Quantum coherence is a key ingredient of many fundamental tests and applications in quantum technology, including quantum communication, imaging, computing, sensing and metrology. However, the transfer of quantum coherence ...

Quantum leap: how we discovered a new way to create a hologram

Once, holograms were just a scientific curiosity. But thanks to the rapid development of lasers, they have gradually moved center stage, appearing on the security imagery for credit cards and bank notes, in science fiction ...

page 2 from 9