Signs of saturation emerge from particle collisions at RHIC

Nuclear physicists studying particle collisions at the Relativistic Heavy Ion Collider (RHIC)—a U.S. Department of Energy Office of Science user facility at DOE's Brookhaven National Laboratory—have new evidence that ...

Shining light on the inner details and breakup of deuterons

Scientists have found a way to "see" inside deuterons, the simplest atomic nuclei, to better understand the "glue" that holds the building blocks of matter together. The new results come from collisions of photons (particles ...

Collisions of light produce matter/antimatter from pure energy

Scientists studying particle collisions at the Relativistic Heavy Ion Collider (RHIC)—a U.S. Department of Energy Office of Science user facility for nuclear physics research at DOE's Brookhaven National Laboratory—have ...

THOR: Driving collaboration in heavy-ion collision research

In the universe's earliest moments, particles existed in an unimaginably hot plasma, whose behavior was governed by deeply complex webs of interaction between individual particles. Today, researchers can recreate these exotic ...

Recreating Big Bang matter on Earth

The Large Hadron Collider (LHC) at CERN usually collides protons together. It is these proton–proton collisions that led to the discovery of the Higgs boson in 2012. But the world's biggest accelerator was also designed ...

page 2 from 5