Quarks and gluons: The JADE experiment at DESY

A new paper in The European Physical Journal H (EPJ H) describes the JADE experiment at DESY in Hamburg, in which high-energy electron-positron collisions led to the discovery of the particle that holds quarks together to ...

Data reveal a surprising preference in particle spin alignment

Given the choice of three different "spin" orientations, certain particles emerging from collisions at the Relativistic Heavy Ion Collider (RHIC), an atom smasher at the U.S. Department of Energy's (DOE) Brookhaven National ...

New type of entanglement lets scientists 'see' inside nuclei

Nuclear physicists have found a new way to use the Relativistic Heavy Ion Collider (RHIC)—a particle collider at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory—to see the shape and details inside ...

What triggers flow fluctuations in heavy-ion collision debris?

Scientists in the STAR collaboration at the Relativistic Heavy Ion Collider (RHIC)—an atom smasher at the U.S. Department of Energy's Brookhaven National Laboratory—have published a comprehensive analysis aimed at determining ...

Exploring the hidden charm of quark-gluon plasma

Quark–gluon plasma is an extremely hot and dense state of matter in which the elementary constituents—quarks and gluons—are not confined inside composite particles called hadrons, as they are in the protons and neutrons ...

Signs of saturation emerge from particle collisions at RHIC

Nuclear physicists studying particle collisions at the Relativistic Heavy Ion Collider (RHIC)—a U.S. Department of Energy Office of Science user facility at DOE's Brookhaven National Laboratory—have new evidence that ...

page 3 from 14