Related topics: x rays

3-D imaging the flavor content of the nucleon

The Jefferson Lab Hall A Collaboration, in an experiment led by researchers at Faculté des Sciences de Monastir in Tunisia, Institut de Physique Nucléaire d'Orsay in France and Old Dominion University in the United States, ...

Positron luminescence outshines that of electrons

In old cathode ray TVs, a picture is generated when an electron beam excites a phosphor screen, causing the phosphor to radiate light. Now in a new study, researchers have found that a beam of positrons (positively charged ...

Hard-to-stretch silicon becomes superelastic

As a hard and brittle material, silicon has practically no natural elasticity. But in a new study, researchers have demonstrated that amorphous silicon can be grown into superelastic horseshoe-shaped nanowires that can undergo ...

Nanowire lens can reconfigure its imaging properties

(PhysOrg.com) -- By taking advantage of the unique optical properties of nanoscale materials, researchers have designed a lens made of nanowires that can reconfigure its imaging properties without any electronic or mechanical ...

page 1 from 40

Cathode ray

Cathode rays (also called an electron beam or e-beam) are streams of electrons observed in vacuum tubes, i.e. evacuated glass tubes that are equipped with at least two metal electrodes to which a voltage is applied, a cathode or negative electrode and an anode or positive electrode. They were discovered by German scientist Johann Hittorf in 1869 and in 1876 named by Eugen Goldstein kathodenstrahlen (cathode rays). Electrons were first discovered as the constituents of cathode rays. In 1897 British physicist J. J. Thompson showed the rays were composed of a previously unknown negatively charged particle, which was named electron.

This text uses material from Wikipedia, licensed under CC BY-SA