Electrons hop to it on twisted molecular wires

Researchers at Osaka University synthesized twisted molecular wires just one molecule thick that can conduct electricity with less resistance compared with previous devices. This work may lead to carbon-based electronic devices ...

Device splits and recombines superconducting electron pairs

A device that can separate and recombine pairs of electrons may offer a way to study an unusual form of superconductivity, according to RIKEN physicists. This superconducting state would involve exotic particles called Majorana ...

Creating a 2-D platinum magnet

University of Groningen physicists have induced magnetism in platinum with an electric field created by a paramagnetic ionic liquid. As only the surface of the platinum is affected, this creates a switchable 2-D ferromagnet. ...

Invisible, stretchable circuits to shape next-gen tech

Electrically conductive films that are optically transparent have a central role in a wide range of electronics applications, from touch screens and video displays to photovoltaics. These conductors function as invisible ...

Repetition key to self-healing, flexible medical devices

Medical devices powered by synthetic proteins created from repeated sequences of proteins may be possible, according to materials science and biotechnology experts, who looked at material inspired by the proteins in squid ...

page 5 from 15