Conductive paint lands in pens and pots for creatives

London-based Bare Conductive Ltd. makes electrically conductive paint called Bare Paint. The substance allows the painting of "liquid wiring" on any surface. Except for skin, you can apply its paint on walls and assorted ...

Researchers capture an image of negative capacitance in action

For the first time ever, an international team of researchers imaged the microscopic state of negative capacitance. This novel result provides researchers with fundamental, atomistic insight into the physics of negative capacitance, ...

Graphene could revolutionize the Internet of Things

PFL researchers have produced a tunable, graphene-based device that could significantly increase the speed and efficiency of wireless communication systems. Their system works at very high frequencies, delivering unprecedented ...

'Negative capacitance' could bring more efficient transistors

Researchers have experimentally demonstrated how to harness a property called negative capacitance for a new type of transistor that could reduce power consumption, validating a theory proposed in 2008 by a team at Purdue ...

Negative capacitance detected

Prof. Gustau Catalan has published in Nature Materials a commentary on the measurement of negative capacitance presented by the teams led by Prof Sayeef Salahuddin and Prof. Ramesh in the same magazine. The study detects ...

Simple self-charging battery offers power solutions for devices

A new type of battery combines negative capacitance and negative resistance within the same cell, allowing the cell to self-charge without losing energy, which has important implications for long-term storage and improved ...

Apple wins multi-touch and glass process patents

(Phys.org)—The US Patent and Trademark Office has published thirty-six patents granted for Apple. Patently Apple has highlighted two of those patents. One has to do with multi-touch displays. The multi-touch patent relates ...

page 1 from 3

Capacitance

In electromagnetism and electronics, capacitance is the ability of a capacitor to store energy in an electric field. Capacitance is also a measure of the amount of electric potential energy stored (or separated) for a given electric potential. A common form of energy storage device is a parallel-plate capacitor. In a parallel plate capacitor, capacitance is directly proportional to the surface area of the conductor plates and inversely proportional to the separation distance between the plates. If the charges on the plates are +q and −q, and V gives the voltage between the plates, then the capacitance is given by

The SI unit of capacitance is the farad; 1 farad is 1 coulomb per volt.

The energy (measured in joules) stored in a capacitor is equal to the work done to charge it. Consider a capacitor of capacitance C, holding a charge +q on one plate and −q on the other. Moving a small element of charge dq from one plate to the other against the potential difference V = q/C requires the work dW:

where W is the work measured in joules, q is the charge measured in coulombs and C is the capacitance, measured in farads.

The energy stored in a capacitor is found by integrating this equation. Starting with an uncharged capacitance (q = 0) and moving charge from one plate to the other until the plates have charge +Q and −Q requires the work W:

This text uses material from Wikipedia, licensed under CC BY-SA