Study finds faster, cheaper way to cool electronic devices

April 9th, 2012 in Nanotechnology / Nanomaterials

A North Carolina State University researcher has developed a more efficient, less expensive way of cooling electronic devices – particularly devices that generate a lot of heat, such as lasers and power devices.

The technique uses a "heat spreader" made of a copper-graphene , which is attached to the electronic device using an indium-graphene interface film "Both the copper-graphene and indium-graphene have higher thermal conductivity, allowing the device to cool efficiently," says Dr. Jag Kasichainula, an associate professor of materials science and engineering at NC State and author of a paper on the research. Thermal conductivity is the rate at which a material conducts heat.

In fact, Kasichainula found that the copper-graphene film's allows it to cool approximately 25 percent faster than pure copper, which is what most devices currently use.

Dissipating heat from is important, because the devices become unreliable when they become too hot.

The paper also lays out the manufacturing process for creating the copper-graphene composite, using an electrochemical deposition process. "The copper-graphene composite is also low-cost and easy to produce," Kasichainula says. "Copper is expensive, so replacing some of the with graphene actually lowers the overall cost."

More information: The paper, "Thermal Conductivity of Copper-Graphene Composite Films Synthesized by Electrochemical Deposition with Exfoliated Graphene Platelets," is published in Metallurgical and Materials Transactions B.

Provided by North Carolina State University

"Study finds faster, cheaper way to cool electronic devices." April 9th, 2012. http://phys.org/news/2012-04-faster-cheaper-cool-electronic-devices.html