Nanotoxicology - new branch of learning

Aug 30, 2004

Nanotechnology, the 'science of small things' is set to bring huge advantages in engineering, electronics, medicine and IT-- but the potential threats to health that widespread use of nanoparticles could bring need to be scrutinised, says a University of Edinburgh expert in this month's edition of Occupational and Environmental Medicine.

Professor Ken Donaldson, a lung toxicology expert and Professor of Respiratory Medicine at the University, calls for a new discipline--nanotoxicology-- to be built up, to address knowledge gaps and to help develop a safe nanotechnology. He wants guidelines to be developed to test all materials in the nanoscale where human health could be involved.

Professor Donaldson says: "We believe that efforts to untangle science and science fiction regarding the risks from nanotechnology are needed and that a focus on the potential harmful effects of nanoparticles is both timely and necessary. The importance of nanotechnology to the economy and to our future wellbeing is beyond debate, but its potential adverse impacts need to be studied along the same lines. A discipline of nanotoxicology would make an important contribution to the development of a sustainable and safe nanotechnology .

He added: "Our current knowledge of the toxicology of nanoparticles and nanotubes (tiny carbon tubes) is poor but suggests that nanoparticles may be able to have undesirable effects at their point of entry into the body, for example, the lungs, and might also be able to affect other organs. Nanoparticles in food may cross into the gut lymphatic system and so reach other organs more easily than larger particles do. Inhaled nanoparticles have been reported to travel from nasal nerves to the brain, a phenomenon seen with some viruses similar in size to nanoparticles."

Nanoparticles, materials the size of millionths of a millimetre, are already present in large numbers in the air from natural sources and from vehicle exhaust emissions. They are also found in sunblocks, boot polish, tyres and photocopier toner. In future, however, they may be used in clothing manufacture, to purify water, clean up contaminated ground, deliver drugs to specific parts of the body or be used as tiny security sensors.

Source: University of Edinburgh

Explore further: Scientists come closer to the industrial synthesis of a material harder than diamond

add to favorites email to friend print save as pdf

Related Stories

PPPL studies plasma's role in synthesizing nanoparticles

Jul 22, 2014

DOE's Princeton Plasma Physics Laboratory (PPPL) has received some $4.3 million of DOE Office of Science funding, over three years, to develop an increased understanding of the role of plasma in the synthesis ...

Recommended for you

For electronics beyond silicon, a new contender emerges

6 hours ago

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

Making quantum dots glow brighter

8 hours ago

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow ...

The future face of molecular electronics

9 hours ago

The emerging field of molecular electronics could take our definition of portable to the next level, enabling the construction of tiny circuits from molecular components. In these highly efficient devices, ...

User comments : 0