Scientists Model Hepatitis C Virus

May 25, 2007

One of the most common life-threatening viral infections in the United States today is hepatitis C virus (HCV). The standard treatment is successful in only about 50 percent of treated HCV chronic patients, with no effective alternative treatment for those who fail to clear the virus.

Recently, scientists at Los Alamos National Laboratory, in collaboration with researchers from the Center for HCV Research at Rockefeller University, developed the first mathematical model of intracellular HCV replication. The model is designed to help scientists and medical researchers develop a better understanding of the dynamics of replication, as well as the mechanisms of drugs currently being used to treat HCV. This new understanding may eventually lead researchers to a more successful treatment for the virus.

In research published recently in the Journal of Virology, Los Alamos theoretical biophysicist Harel Dahari and his colleagues describe how they leveraged recent advances in HCV cell culture replication to provide the quantitative data necessary for creating a computer model of the dynamic interplay between host and virus during replication of the virus in Huh-7 (human liver) cells.

"With more than 200 million people in the world infected with HCV and half of those not responding to treatments," said Dahari, "our model can be an important tool for understanding the HCV replication mechanisms. Perhaps more importantly, it may prove useful in designing and evaluating new antivirals for use in combating the virus."

According to the researchers, the next step will be to incorporate virus production and infection into one comprehensive model of the complete HCV life cycle.

Dahari, Ruy Ribeiro and Alan Perelson from Los Alamos and Charles Rice from Rockefeller University collaborated in this research, which was funded by the National Institutes of Health.

Source: Los Alamos National Laboratory

Explore further: Clipping proteins that package genes may limit abnormal cell growth in tumors

add to favorites email to friend print save as pdf

Related Stories

Most detailed picture ever of key part of hepatitis C

Nov 28, 2013

Scientists at The Scripps Research Institute (TSRI) have determined the most detailed picture yet of a crucial part of the hepatitis C virus, which the virus uses to infect liver cells. The new data reveal ...

Mathematical models to better combat HIV

May 31, 2013

The first few hours to days following exposure to human immunodeficiency virus (HIV) can be of critical importance in determining if infection occurs in a patient. But the low numbers of viruses and infected cells at this ...

Hepatitis C-like viruses identified in bats and rodents

Apr 22, 2013

As many as one in 50 people around the world is infected with some type of hepacivirus or pegivirus, including up to 200 million with hepatitis C virus (HCV), a leading cause of liver failure and liver cancer. There has been ...

New mouse viruses could aid hepatitis research

Apr 09, 2013

Newly discovered mouse viruses could pave the way for future progress in hepatitis research, enabling scientists to study human disease and vaccines in the ultimate lab animal. In a study to be published in mBio, the online ...

Recommended for you

Organovo has 3D-printed liver tissue for drug testing

Nov 20, 2014

(Medical Xpress)—The commercial release of 3D printed liver tissue was announced earlier this week. Organovo is the company behind the release. The product is intended for use for preclinical drug discovery ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.