Princeton wins NASA Competition to Develop Plasma Rocket

Aug 30, 2004

NASA has selected engineers at Princeton University to develop an advanced rocket thruster that could send people or robots to other planets with far less propellant than conventional engines.

The National Aeronautics and Space Administration awarded a three-year, $4.4 million contract to a team led by Edgar Choueiri, associate professor of mechanical and aerospace engineering, to develop an advanced type of rocket called a plasma thruster. The contract is part of a broad effort by NASA to develop "a new class of ambitious robotic and human exploration missions not possible with existing propulsion technologies," according to Ray Taylor, acting deputy director of NASA's Project Prometheus.

Plasma thrusters are unlike conventional rockets because they do not burn fuel. Instead, they produce superheated, electrically charged particles, called plasma, and use electromagnetic forces to propel the plasma particles from the thruster at a very high speed. Plasma thrusters need relatively little propellant because the particles can be made to move much faster than the combustion exhaust from conventional rockets. In Choueiri's system, the particles will be lithium ions.

Plasma propulsion systems have been used in recent space flights, but still do not operate at the very high power levels (hundreds of kilowatts) required for interplanetary flight, said Choueiri. His project, called "Alfa2: Advanced Lithium-fed Applied-field Lorentz Force Accelerator," could result in a rocket design capable of sending heavy cargo and humans to the moon, Mars or beyond.

Choueiri will lead a group that also includes scientists at three NASA facilities -- the Glenn Research Center, Jet Propulsion Laboratory and Marshall Space Flight Center -- in addition to the University of Michigan and the Worcester (Mass.) Polytechnic Institute.

Source: Princeton University

Explore further: Black hole chokes on a swallowed star

add to favorites email to friend print save as pdf

Related Stories

Peering into cosmic magnetic fields

15 hours ago

The generation of cosmic magnetic fields has long intrigued astrophysicists. Since it was first described in 1959, a phenomenon known as Weibel filamentation instability—a plasma instability present in ...

Rosetta continues into its full science phase

Nov 20, 2014

With the Philae lander's mission complete, Rosetta will now continue its own extraordinary exploration, orbiting Comet 67P/Churymov–Gerasimenko during the coming year as the enigmatic body arcs ever closer ...

Recommended for you

Black hole chokes on a swallowed star

5 hours ago

A five-year analysis of an event captured by a tiny telescope at McDonald Observatory and followed up by telescopes on the ground and in space has led astronomers to believe they witnessed a giant black hole ...

NOAA's DSCOVR going to a 'far out' orbit

6 hours ago

Many satellites that monitor the Earth orbit relatively close to the planet, while some satellites that monitor the sun orbit our star. DSCOVR will keep an eye on both, with a focus on the sun. To cover both ...

Cosmic puzzle settled: Comets give us shooting stars

10 hours ago

Suspicions that shooting stars come from comet dust, transformed into fiery streaks as they hit Earth's atmosphere, have been bolstered by Europe's Rosetta space mission, scientists reported Monday.

Swarm of microprobes to head for Jupiter

12 hours ago

A swarm of tiny probes each with a different sensor could be fired into the clouds of Jupiter and grab data as they fall before burning up in the gas giant planet's atmosphere. The probes would last an estimated ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.