Novel sugar-to-hydrogen technology promises transportation fuel independence

May 23, 2007

The hydrogen economy is not a futuristic concept. The U.S. Department of Energy's 2006 Advance Energy Initiative calls for competitive ethanol from plant sources by 2012 and a good selection of hydrogen-powered fuel cell vehicles by 2020.

Researchers at Virginia Tech, Oak Ridge National Laboratory, and the University of Georgia propose using polysaccharides, or sugary carbohydrates, from biomass to directly produce low-cost hydrogen for the new hydrogen economy.

According to the DOE, advances are needed in four areas to make hydrogen fuel an economical reality for transportation – production, storage, distribution, and fuel cells. Most industrial hydrogen currently comes from natural gas, which has become expensive. Storing and moving the gas, whatever its source, is costly and cumbersome, and even dangerous. And there is little infrastructure for refueling a vehicle.

"We need a simple way to store and carry hydrogen energy and a simple process to produce hydrogen, said Y.-H. Percival Zhang, assistant professor of biological systems engineering at Virginia Tech.

Using synthetic biology approaches, Zhang and colleagues Barbara R. Evans and Jonathan R. Mielenz of ORNL and Robert C. Hopkins and Michael W.W. Adams of the University of Georgia are using a combination of 13 enzymes never found together in nature to completely convert polysaccharides (C6H10O5) and water into hydrogen when and where that form of energy is needed. This "synthetic enzymatic pathway"research appears in the May 23 issue of PLoS ONE, the online, open-access journal from the Public Library of Science.

Polysaccharides like starch and cellulose are used by plants for energy storage and building blocks and are very stable until exposed to enzymes. Just add enzymes to a mixture of starch and water and "the enzymes use the energy in the starch to break up water into only carbon dioxide and hydrogen,"Zhang said.

A membrane bleeds off the carbon dioxide and the hydrogen is used by the fuel cell to create electricity. Water, a product of that fuel cell process, will be recycled for the starch-water reactor. Laboratory tests confirm that it all takes place at low temperature -- about 86 degrees F -- and atmospheric pressure.

The vision is for the ingredients to be mixed in the fuel tank of your car, for instance. A car with an approximately 12-gallon tank could hold 27 kilograms (kg) of starch, which is the equivalent of 4 kg of hydrogen. The range would be more than 300 miles, Zhang estimates. One kg of starch will produce the same energy output as 1.12 kg (0.38 gallons) of gasoline.

Since hydrogen is gaseous, hydrogen storage is the largest obstacle to large-scale use of hydrogen fuel. The Department of Energy's long-term goal for hydrogen storage was 12 mass percent, or 0.12 kg of hydrogen per one kg of container or storage material, but such technology is not available, said Zhang. Using polysaccharides as the hydrogen storage carrier, the research team achieved hydrogen storage capacity as high as 14.8 mass percent, they report in the PLOS article.

The idea began as a theory. The research was based on Zhang's previous work pertaining to cellulosic ethanol production and the ORNL and University of Georgia researchers' work with enzymatic hydrogen production. UGA Distinguished Professor Adams is co-author of the first enzymatic hydrogen paper in Nature Biotechnology in 1996. The researchers were certain they could put the processes together in one pot. They tested the theory using Oak Ridge's hydrogen detectors and documented that hydrogen is produced as they predicted.

Mielenz, who heads the Bioconversion Group in ORNL's Biosciences Division, attributed the successful research to a unique collaborative working relationship between scientists, lab divisions, and universities.

"Pairing our biomass conversion capabilities with facilities for studying renewable hydrogen production in the lab's Chemical Sciences Division was a key to this project,"Mielenz said. "This also shows the value of partnerships with universities such as Virginia Tech and the University of Georgia."

It is a new process that aims to release hydrogen from water and carbohydrate by using multiple enzymes as a catalyst, Zhang said. "In nature, most hydrogen is produced from anaerobic fermentation. But hydrogen, along with acetic acid, is a co-product and the hydrogen yield is pretty low -- only four molecules per molecule of glucose. In our process, hydrogen is the main product and hydrogen yields are three-times higher, and the likely production costs are low – about $1 per pound of hydrogen. "

Over the years, many substances have been proposed as "hydrogen carriers,"such as methanol, ethanol, hydrocarbons, or ammonia – all of which require special storage and distribution. Also, the thermochemical reforming systems require high temperatures and are complicated and bulky. Starch, on the other hand, can be distributed by grocery stores, Zhang points out.

"So it is environmentally friendly, energy efficient, requires no special infrastructure, and is extremely safe. We have killed three birds with one stone,"he said. "We have hydrogen production with a mild reaction and low cost. We have hydrogen storage and transport in the form of starch or syrups. And no special infrastructure is needed."

"The next R&D step will be to increase reaction rates and reduce enzyme costs," Zhang said. "We envision that in the future we will drive vehicles powered by carbohydrate, or energy stored in solid carbohydrate form, with hydrogen production from carbohydrate and water, and electricity production via hydrogen-fuel cells.

"What is more important, the energy conversion efficiency from the sugar-hydrogen-fuel cell system is extremely high – greater than three times higher than a sugar-ethanol-internal combustion engine,"Zhang said. "It means that if about 30 percent of transportation fuel can be replaced by ethanol from biomass as the DOE proposed, the same amount of biomass will be sufficient to provide 100 percent of vehicle transportation fuel through this technology."

In addition, the use of carbohydrates from biomass as transportation fuels will produce zero net carbon dioxide emissions and bring benefits to national energy security and the economy, Zhang said.

Source: Virginia Tech

Explore further: Environmentally compatible organic solar cells

add to favorites email to friend print save as pdf

Related Stories

New study outlines 'water world' theory of life's origins

21 hours ago

(Phys.org) —Life took root more than four billion years ago on our nascent Earth, a wetter and harsher place than now, bathed in sizzling ultraviolet rays. What started out as simple cells ultimately transformed ...

Buoyant Airborne Turbine to harness winds in Alaska

Mar 26, 2014

(Phys.org) —Call it a power-transmitter in the sky. Better still, call it by its official name, the Buoyant Airborne Turbine (BAT ) which a company called Altaeros Energies will be launching soon in Alaska ...

NREL driving research on hydrogen fuel cells

Mar 25, 2014

Hydrogen fuel cell electric vehicles (FCEV) were the belles of the ball at recent auto shows in Los Angeles and Tokyo, and researchers at the Energy Department's National Renewable Energy Laboratory (NREL) ...

Recommended for you

Environmentally compatible organic solar cells

14 hours ago

Environmentally compatible production methods for organic solar cells from novel materials are in the focus of "MatHero". The new project coordinated by Karlsruhe Institute of Technology (KIT) aims at making ...

Floating nuclear plants could ride out tsunamis

15 hours ago

When an earthquake and tsunami struck the Fukushima Daiichi nuclear plant complex in 2011, neither the quake nor the inundation caused the ensuing contamination. Rather, it was the aftereffects—specifically, ...

Unlocking secrets of new solar material

15 hours ago

(Phys.org) —A new solar material that has the same crystal structure as a mineral first found in the Ural Mountains in 1839 is shooting up the efficiency charts faster than almost anything researchers have ...

Ikea buys wind farm in Illinois

Apr 15, 2014

These days, Ikea is assembling more than just furniture. About 150 miles south of Chicago in Vermilion County, Ill., the home goods giant is building a wind farm large enough to ensure that its stores will never have to buy ...

A homemade solar lamp for developing countries

Apr 14, 2014

(Phys.org) —The solar lamp developed by the start-up LEDsafari is a more effective, safer, and less expensive form of illumination than the traditional oil lamp currently used by more than one billion people ...

User comments : 0

More news stories

Microsoft CEO is driving data-culture mindset

(Phys.org) —Microsoft's future strategy: is all about leveraging data, from different sources, coming together using one cohesive Microsoft architecture. Microsoft CEO Satya Nadella on Tuesday, both in ...

Floating nuclear plants could ride out tsunamis

When an earthquake and tsunami struck the Fukushima Daiichi nuclear plant complex in 2011, neither the quake nor the inundation caused the ensuing contamination. Rather, it was the aftereffects—specifically, ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Quantenna promises 10-gigabit Wi-Fi by next year

(Phys.org) —Quantenna Communications has announced that it has plans for releasing a chipset that will be capable of delivering 10Gbps WiFi to/from routers, bridges and computers by sometime next year. ...