Genetic research increases understanding of autoimmune disease risk

May 22, 2007

Geneticists have identified a link between the number of copies of a specific gene an individual has and their susceptibility to autoimmune diseases like lupus. Research using DNA has revealed that people who have a below average number of copies of a gene, known as FCGR3B, have an increased risk of developing diseases caused when the body's immune system attacks its own tissue.

The research by Professor Tim Aitman of the Medical Research Council Clinical Sciences Centre at Imperial College London, and colleagues, is published in Nature Genetics.

Professor Aitman explains the team's research discovery: "The variations in DNA that people carry contribute to observable characteristics like height, weight and skin colour. Genetic variations have similar effects on individual susceptibility to disease. In this research our team focused on structural differences in the genome and set out to determine whether the number of copies of a particular gene a person has influences their chances of developing an autoimmune disease. We discovered that not only does the number of copies of a gene you have influence your chances of disease but that this kind of structural variation in the genome could be driving evolution of human weaknesses for infection and inflammation."

The team studied DNA from two groups of people living in the UK and France. They discovered that people who have a comparatively low number of FCGR3B genes are more likely to suffer from autoimmune diseases like lupus (systemic lupus erythematosus) that affect the whole body. The same link was not found to autoimmune conditions affecting just one organ such as Addisons' disease, which damages the adrenal gland, or Graves' disease, which attacks the thyroid.

Human genome research increasingly provides evidence that individuals vary in the number of copies of genes present in each of their genomes. Professor Aitman concludes: "Our discovery highlights the importance of gene copy number variation, that is differences in the number of copies of a specific gene a person carries, in genetic predisposition to common human diseases. The next step is to find out whether genes that are closely related to this susceptibility gene, FCGR3B, also vary in copy number and predispose to similar diseases."

The research team hopes to achieve these aims by studying the genomes of individual people to find out if there is any correlation between gene copy number and patterns of disease presentation or responses to specific treatments.

Source: Imperial College London

Explore further: First genetic link discovered to difficult-to-diagnose breast cancer sub-type

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Refining the language for chromosomes

Apr 17, 2014

When talking about genetic abnormalities at the DNA level that occur when chromosomes swap, delete or add parts, there is an evolving communication gap both in the science and medical worlds, leading to inconsistencies in ...

Down's chromosome cause genome-wide disruption

Apr 16, 2014

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

User comments : 0

More news stories

UAE reports 12 new cases of MERS

Health authorities in the United Arab Emirates have announced 12 new cases of infection by the MERS coronavirus, but insisted the patients would be cured within two weeks.

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...