K-State attosecond research could aid Homeland Security

May 21, 2007

Building a new laser-like X-ray source powerful and quick enough to capture fast motion in the atomic world is a big job. But Zenghu Chang, Kansas State University professor of physics, and his team of physicists and engineers think their efforts will be worth it.

Possible applications of this attosecond laser technology include identifying elements. This means a laser pulse could be beamed into a suspicious package, for example, to quickly determine if it in fact did contain dangerous chemicals.

Chang is the principal investigator on a grant from the Department of Defense for research to improve attosecond sources and exploit the technology breakthrough for applications. The award is $1.25 million per year for three years with a possible two-year extension. Other team member institutions are Texas A&M University and the University of Ottawa.

Attosecond pulses are a special kind of X-ray; they can identify what molecules are in something.

"Just like each person has his or her unique fingerprints, molecules can be identified by their unique features too," Chang said. "As an example, different molecules absorb light differently. That is why we see things with different colors. We can tell which one is made of gold and which one is made of silver just by looking at their colors."

Attosecond pulses are extremely fast flashes of light, which Chang likens to a camera flash.

"This is very similar to taking pictures of a moving body with a camera," he said. "One has to reduce the exposure time using the shutter of the camera for a fast-moving object otherwise the image is blurred."

For their research on attoseconds, Chang and colleagues need a short-pulse, high-power laser. They are developing the technique to control the phase of a laser pulse and then amplify it.

Other possible uses for this short-pulse, high-power technology include machining. Most of the time when cutting with a high-power laser, more than what is necessary is cut, due to its extra heat. But with short pulses, the laser is much more precise.

"The technology is very new and we're still looking at possible applications," Chang said.

Source: Kansas State University

Explore further: X-ray powder diffraction beamline at NSLS-II takes first beam and first data

add to favorites email to friend print save as pdf

Related Stories

NASA issues 'remastered' view of Jupiter's moon Europa

3 hours ago

(Phys.org) —Scientists have produced a new version of what is perhaps NASA's best view of Jupiter's ice-covered moon, Europa. The mosaic of color images was obtained in the late 1990s by NASA's Galileo ...

Dish restores Turner channels to lineup

3 hours ago

Turner Broadcasting channels such as Cartoon Network and CNN are back on the Dish network after being dropped from the satellite TV provider's lineup during contract talks.

LiquidPiston unveils quiet X Mini engine prototype

8 hours ago

LiquidPiston has a new X Mini engine which is a small 70 cubic centimeter gasoline powered "prototype. This is a quiet, four-stroke engine with near-zero vibration. The company said it can bring improvements ...

Recommended for you

Particles, waves and ants

Nov 26, 2014

Animals looking for food or light waves moving through turbid media – astonishing similarities have now been found between completely different phenomena.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.