K-State attosecond research could aid Homeland Security

May 21, 2007

Building a new laser-like X-ray source powerful and quick enough to capture fast motion in the atomic world is a big job. But Zenghu Chang, Kansas State University professor of physics, and his team of physicists and engineers think their efforts will be worth it.

Possible applications of this attosecond laser technology include identifying elements. This means a laser pulse could be beamed into a suspicious package, for example, to quickly determine if it in fact did contain dangerous chemicals.

Chang is the principal investigator on a grant from the Department of Defense for research to improve attosecond sources and exploit the technology breakthrough for applications. The award is $1.25 million per year for three years with a possible two-year extension. Other team member institutions are Texas A&M University and the University of Ottawa.

Attosecond pulses are a special kind of X-ray; they can identify what molecules are in something.

"Just like each person has his or her unique fingerprints, molecules can be identified by their unique features too," Chang said. "As an example, different molecules absorb light differently. That is why we see things with different colors. We can tell which one is made of gold and which one is made of silver just by looking at their colors."

Attosecond pulses are extremely fast flashes of light, which Chang likens to a camera flash.

"This is very similar to taking pictures of a moving body with a camera," he said. "One has to reduce the exposure time using the shutter of the camera for a fast-moving object otherwise the image is blurred."

For their research on attoseconds, Chang and colleagues need a short-pulse, high-power laser. They are developing the technique to control the phase of a laser pulse and then amplify it.

Other possible uses for this short-pulse, high-power technology include machining. Most of the time when cutting with a high-power laser, more than what is necessary is cut, due to its extra heat. But with short pulses, the laser is much more precise.

"The technology is very new and we're still looking at possible applications," Chang said.

Source: Kansas State University

Explore further: Soft, energy-efficient robotic wings

Related Stories

3,000 atoms entangled with a single photon

Mar 25, 2015

Physicists from MIT and the University of Belgrade have developed a new technique that can successfully entangle 3,000 atoms using only a single photon. The results, published today in the journal Nature, repres ...

Scientists build a nanolaser using a single atomic sheet

Mar 24, 2015

University of Washington scientists have built a new nanometer-sized laser—using the thinnest semiconductor available today—that is energy efficient, easy to build and compatible with existing electronics.

Light as puppeteer

Mar 18, 2015

Researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) have demonstrated a more robust method for controlling single, micron-sized particles with light.

Recommended for you

Soft, energy-efficient robotic wings

10 hours ago

Dielectric elastomers are novel materials for making actuators or motors with soft and lightweight properties that can undergo large active deformations with high-energy conversion efficiencies. This has ...

Super sensitive measurement of magnetic fields

Mar 30, 2015

There are electrical signals in the nervous system, the brain and throughout the human body and there are tiny magnetic fields associated with these signals that could be important for medical science. Researchers ...

New idea for Dyson sphere proposed

Mar 30, 2015

(Phys.org)—A pair of Turkish space scientists with Bogazici University has proposed that researchers looking for the existence of Dyson spheres might be looking at the wrong objects. İbrahim Semiz and ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.