Making strides in quantum dot infrared photodetectors

May 17, 2007

Researchers at Northwestern University have made significant strides in the development of quantum dot infrared photodetectors -- technology that may provide new imaging techniques with applications in medical and biological imaging, environmental and chemical monitoring, night vision and infrared imaging from space.

Conventional infrared photon detector technology for imaging applications typically requires that the detector be cooled to very low temperatures -- approximately 77 degrees Kelvin. This cooling requirement adds significant cost, bulk and power consumption to the imaging systems, therefore limiting their usability.

By using nanotechnology to form quantum dots, researchers at Northwestern's Center for Quantum Devices (CQD) are one step closer to achieving the goal of developing high-performance imaging techniques that can operate at higher temperatures.

Quantum dots, also known as "artificial atoms," have been widely investigated as a means of improving a variety of electronic and optoelectronic devices. The small size of quantum dots, usually around 10 nanometers, gives them a unique physical property of three-dimensional confinement, which can enable higher operating temperatures when used in infrared detector design.

"The development of an infrared photon detector that can operate at higher temperatures will enable the use of cheaper, lighter and more efficient cooling methods in the design of infrared imaging systems," said Manijeh Razeghi, Walter P. Murphy Professor of Electrical Engineering and Computer Science and director of the Center for Quantum Devices. "This will allow the use of infrared detectors in a much wider range of applications."

Researchers at CQD made a great breakthrough in the development of high-performance quantum dot infrared photodetectors (QDIP). They have developed a QDIP that operates at room temperature with a peak detection wavelength in the technologically important middle wavelength infrared window -- wavelengths between three and five microns are important because they are not susceptible to absorption by Earth's atmosphere. The QDIP is based on a hybrid indium arsenide quantum dot and an indium gallium arsenide quantum well structure grown on an indium phosphide substrate.

The specific detectivity and quantum efficiency at 150 degrees Kelvin were 4×1010 cmHz1/2/W and 35 percent, respectively. This record high performance was published in the March 26, 2007, issue of Applied Physics Letters, Vol. 90 No. 13.

In devices developed since publication, the performance was further improved with a quantum efficiency of 48 percent through the optimization of the quantum dot growth, which led to stronger infrared absorption.

Researchers at CQD have used this technology to build an infrared camera, or focal plane array (FPA), based on this device. Thermal imaging was demonstrated at temperatures up to 200 degrees Kelvin -- the highest ever demonstrated for a QDIP focal plan array.

Source: Northwestern University

Explore further: The unifying framework of symmetry reveals properties of a broad range of physical systems

add to favorites email to friend print save as pdf

Related Stories

New technology illuminates colder objects in deep space

Jul 09, 2014

Too cool and faint, many objects in the universe are impossible to detect with visible light. Now a Northwestern University team has refined a new technology that could make these colder objects more visible, paving the way ...

Recommended for you

What time is it in the universe?

22 hours ago

Flavor Flav knows what time it is. At least he does for Flavor Flav. Even with all his moving and accelerating, with the planet, the solar system, getting on planes, taking elevators, and perhaps even some ...

Watching the structure of glass under pressure

Aug 28, 2014

Glass has many applications that call for different properties, such as resistance to thermal shock or to chemically harsh environments. Glassmakers commonly use additives such as boron oxide to tweak these ...

Inter-dependent networks stress test

Aug 28, 2014

Energy production systems are good examples of complex systems. Their infrastructure equipment requires ancillary sub-systems structured like a network—including water for cooling, transport to supply fuel, and ICT systems ...

Explainer: How does our sun shine?

Aug 28, 2014

What makes our sun shine has been a mystery for most of human history. Given our sun is a star and stars are suns, explaining the source of the sun's energy would help us understand why stars shine. ...

User comments : 0