Pediatric cancer stem cell identified: understanding the origin of ERMS

May 17, 2007

As published in the June 1 issue of Genes & Development, Dr. Leonard Zon (Children’s Hospital Boston) and colleagues have identified the cancer stem cell for rhabdomyosarcoma, the most common soft-tissue sarcoma of childhood.

“Identifying the cancer stem cell and the evolutionarily conserved genetic programs underlying self-renewal in ERMS will likely lead to new insights into how to destroy these cell types in established malignancies,” explains Dr. Zon.

Rhabdomyosarcoma (RMS) is an aggressive cancer that arises from a primitive skeletal muscle cell called a "rhabdomyoblast". Depending upon on the histology of the cancerous cells, there are several different subtypes of RMS. Embryonal rhabdomyosarcoma (ERMS) is the most common subtype, usually found in children under 15, in the head and neck region and genitourinary tract.

Dr. Zon and colleagues have developed an animal model to identify and test therapeutic targets of human ERMS. The scientists artificially activated the RAS pathways to induce ERMS in a strain of genetically engineered zebrafish. Some transgenic zebrafish developed visible tumors by 10 days of age.

Through their model, Dr. Zon and colleagues were able to identify both an ERMS tumor-cell-of-origin and a novel genetic signature that underlies ERMS progression in zebrafish and human patients. Cancer stem cells make up only a small fraction of the overall number of cells in a tumor. However, they are capable of giving rise to other cancer cells, and thereby drive tumor growth and metastasis. To prevent recurrence and progression, effective long-term therapies must target the self-renewing population of cancer stem cells.

“The zebrafish is ideally suited for use in targeted chemical genetic approaches to specifically inactivate cancer pathways we have identified in our study. Identifying drugs that inactivate these pathways in the ERMS cancer stem cell may have far reaching implications for treatment of patients with this disease.”

Source: Cold Spring Harbor Laboratory

Explore further: How black truffles deal with the jumpers in their genome

add to favorites email to friend print save as pdf

Related Stories

Microsoft challenging US on overseas data

2 hours ago

In a case closely watched by the tech sector, Microsoft will challenge Thursday a US court order requiring it to give prosecutors electronic mail content associated with an overseas server.

Facebook's Internet.org expands in Zambia

2 hours ago

(AP)—Facebook's Internet.org project is taking another step toward its goal of bringing the Internet to people who are not yet online with an app launching Thursday in Zambia.

Sony surprises with first quarter profit

2 hours ago

(AP)—Sony Corp. reported a surprise eightfold jump in quarterly profit Thursday as sales got a perk from a cheap yen and its bottom line was helped by gains from selling buildings and its stake in a video-game maker.

Two teams pave way for advances in 2D materials

15 minutes ago

This month's headlines on two-dimensional polymers showed noteworthy headway. "2-D Polymer Crystals Confirmed At Last," said Chemical & Engineering News. "Engineers Make the World's First Verified, 2-Dimensional P ...

NASA's IceCube no longer on ice

2 hours ago

NASA's Science Mission Directorate (SMD) has chosen a team at NASA's Goddard Space Flight Center in Greenbelt, Maryland, to build its first Earth science-related CubeSat mission.

Samsung profit falls as smartphone sales slow

2 hours ago

(AP)—Samsung Electronics Co. reported a bigger-than-expected fall in second quarter profit on Thursday and said it was uncertain if earnings from its handset business would improve in the current quarter.

Recommended for you

How black truffles deal with the jumpers in their genome

3 hours ago

The black truffle uses reversible epigenetic processes to regulate its genes, and adapt to changes in its surroundings. The 'methylome' - a picture of the genome regulation taking place in the truffle, is published in the ...

Gene research targets scarring process

Jul 28, 2014

Scientists have identified three genes that may be the key to preventing scar formation after burn injury, and even healing existing scars.

User comments : 0